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Abstract: Detecting communities of users and data in the web are important 
issues as the social web evolves and new information is generated everyday. In 
this paper, we discuss six different clustering algorithms that are related to the 
intelligent web. These algorithms help us to identify communities of interest in 
the web, which is very necessary to perform certain actions on specific  
group such as targeted advertisement. We consider the following algorithms: 
single-link algorithm, average-link algorithm, minimum-spanning-tree  
single-link algorithm, K-means algorithm, ROCK algorithm and DBSCAN 
algorithm. These algorithms are categorised into three groups: hierarchical, 
partitional and density-based algorithms. We show how each algorithm works 
and discuss potential advantages and shortcomings. We then compare these 
algorithms against each other and discuss their ability to accurately identify 
communities of interest based on social web data which are large datasets with 
high dimensionality. Finally, we illustrate and discuss our findings through a 
case study, which involves clustering in online social networks. 
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1 Introduction 

The web is a huge repository of information of all kinds and types. Through the years, the 
web has evolved dramatically. From the static Web 1.0, where webmasters create and 
upload web-pages with limited interaction possibilities, to the more dynamic Web 2.0, 
where contents are collaboratively generated and communicated across blogs, feeds and 
social networks. The advent of Web 3.0 brought more intelligence to web contents 
through the evolution of the semantic web and more automation of services over the web 
to support machine-to-machine interactions (SemanticWeb, 2010). 

The semantic web provides novel models for retrieving and analysing web 
information. Using this platform, intelligent web applications are able to analyse users’ 
inputs and behaviours to respond accordingly to different contextual considerations. 
These applications analyse interactions and profile users based on past history or  
pre-established records. Another possibility follows a case-based reasoning approach to 
match users with similar assets and aspirations to common web experiences. The 
opportunity to analyse similarities within social contexts empowers web experiences 
through identifying the commons to recommend preferential web contents and services 
(Adomavicius and Tuzhilin, 2005). 

Connectivity is a core feature of intelligent web applications, where users  
share files, publish articles, comment on others’ blogs or forums, view users’ profiles  
and add new members to their connections. These are typical operations within  
today’s social networks such as Facebook (http://www.facebook.com), MySpace 
(http://www.myspace.com) and Twitter (http://www.twitter.com). To make useful 
inferences over social connections, intelligent web applications need the following three 
typical modules in classical knowledge-based systems (Marmanis and Babenko, 2009): 

1 Content: represented by the hypermedia data of the considered domain and 
composed of inter-linked resources. 

2 Reference: or the knowledge base that tags and annotates domain content through 
rules which categorise contents into meaningful folksonomies. 

3 Algorithms: which form the inference engine modules which on the domain content. 

People feed the web with information everyday. This continuous flow of information 
may result in some inconsistencies as users will have a myriad of choices that need to be 
organised in an efficient manner. Data classification and clustering facilitate the process 
of analysing and building meaningful inferences, for example grouping similar  
web-pages could help finding serious problems such as mirrored web-pages or detecting 
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copyright violation (Haveliwala et al., 2000). In the intelligent web, there are two 
algorithmic approaches to categorise data: clustering and classification (Marmanis and 
Babenko, 2009). These approaches are useful in performing targeted advertisements or 
enhancing user web experience by allowing users to view posts that are of interest to 
them (Adomavicius and Tuzhilin, 2005) and increase individual personalised web 
experiences by performing special recommendations for specific users or providing page 
categorisations for individual users such as Google News (http://news.google.com). 

The objective of this paper is to provide users with means to identify other users and 
data groups in the web. We focus on clustering algorithms in the social web context 
based on the following approaches categorisation: hierarchical, partitional and  
density-based algorithms. Each of these approaches features intrinsic techniques such as 
threshold or centroid techniques. We also discuss and compare six important algorithms 
used for clustering purpose namely: link-based (single-link, average-link and MST 
single-link), K-means, ROCK and DBSCAN algorithms. 

The rest of this paper is organised as follows: Section 2 defines clustering. Section 3 
discusses different types of clustering techniques. Section 4 introduces some important 
terms and concepts related to clustering. Section 5 reveals different clustering algorithms. 
Section 6 presents a comparison among candidate clustering algorithms. Section 7 
describes a case study related to the use of clustering algorithms in social networks where 
we evaluate some of the candidate algorithms’ clustering performance and finally  
Section 8 concludes this paper with a summary of works and some suggested future 
works. 

2 Clustering in social web 

Dividing people into different groups is one of human natures. Previously, people used 
clustering in order to study phenomena and compare them with other phenomena based 
on a certain set of rules. Clustering refers to grouping similar things together. It is a 
division of data into groups of similar objects where each group is called a cluster. It 
consists of objects that embody some similarities and are dissimilar to objects of other 
groups (Berkhin, 2002). We can find many definitions for clustering in the literatures 
(Jain et al., 1999; Xu and Wunsch, 2005; Gower, 1971; Jain and Dubes, 1988; Mocian, 
2009; Tan et al., 2005) but the most common definition consists in partitioning data into 
groups (called clusters), based on some criteria so that the data grouped in one cluster 
should share common similarities calculated using some distance measurements. We can 
define clustering in the context of social network by cliques of individuals with high 
friendship relations internally and scattered friendship externally (Mishra et al., 2007). 
With clustering, we can find groups of interest that contain useful properties  
that are helpful to study these groups and understand their behaviours. Amazon 
(http://www.amazon.com), for example, provide users with recommendations based on 
their shopping experience. Twitter also started lately to recommend new friends (people 
to follow) to their users based on several factors, including the people these users follow 
and the people they follow (Discovering Who To Follow, 2010). 

Clustering can be used for summarising large inputs. So instead of applying 
algorithms on an entire dataset, we can reduce the dataset based on specific clustering 
criteria (Marmanis and Babenko, 2009). Clustering analysis has been used in many 
research fields such as image analysis, data mining, pattern recognition, information 
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retrieval and machine learning (Tan et al., 2005). In the web, identifying groups of data 
or users would facilitate the availability and accessibility of data. Using clusters in the 
web is a must because of the tremendous potential which results from identifying groups 
of users out of a huge number of users on the internet, especially in social networks. 
Similarly, filtering out relevant information out of the tremendous amount of information 
that are linked together can lead to personalised exposure to useful information. 
However, in both cases, the huge size makes it hard to analyse this information. 

3 Clustering types 

There are many kinds of clustering algorithms available in the literatures (Jain et al., 
1999; Xu and Wunsch, 2005; Mocian, 2009; Berkhin, 2002). They can be categorised 
based on the cluster structure (hierarchical, partitional), data types and structure 
(numerical, categorical) or data size (large datasets) (Marmanis and Babenko, 2009). In 
general, clustering approaches can be divided into four main types: hierarchical, 
partitional, density-based and meta-search controlled (Stein and Busch, 2005). In our 
paper, we discuss hierarchical, partitional and density-based clustering. 

The hierarchical and partitional algorithms partition the data into different  
non-overlapping subsets. A partition of a dataset X = {x1, x2, …, xN}, where xj = (xj1, xj2, 
…, xjd) ∈ dℜ  with each measure xji called a feature (attribute, dimension or variable) and 
d is the input space dimensionality (Xu and Wunsch, 2005), is a collection C = {C1, C2, 
…, Ck} of k non-overlapping data subsets. Ci ≠ ∅ (non-null clusters) such that C1 ∪ C2 ∪ 
… ∪ Ck = X, where X is the super cluster and Ci ∩ Cj = ∅ for i ≠ j (Hruschka et al., 
2009). The data partition is overlapping if the condition (Ci ∩ Cj = ∅ for i ≠ j) is ignored 
and in that case the cluster will have sub clusters of different levels inside it (Hruschka  
et al., 2009). 

3.1 Hierarchical clustering 

In hierarchical clustering, the clusters are represented as a tree called dendrogram  
(Xu and Wunsch, 2008). They can be either top-down (divisive) or bottom-up 
(agglomerative). Most of these algorithms need a threshold parameter that tells the 
algorithm when to stop looking for subgroups. Figure 1 shows a graphical representation 
of divisive and agglomerative algorithms. 

In divisive hierarchical clustering, the algorithm starts from the global cluster that 
contains all the elements and then the data is divided into sub clusters. We need to find 
out which clusters to split and how to perform the splitting (Hammouda, 2002). While in 
agglomerative hierarchical clustering, the algorithm starts from a single cluster and then 
each two clusters are merged together until the global cluster is reached. DHSCAN is a 
hierarchical clustering algorithm represented in Naughton et al. (2006) and used to group 
articles that refer to the same event and have similar sentences together. 

The basic idea behind clustering is to find a distance/similarity measure between any 
two points such as Euclidean distance, cosine distance etc. In particular, this would be the 
shortest path in linkage algorithms that are based on linkage metric. To calculate the 
distance between two points, those algorithms include single-link, average-link and MST 
link techniques. 



   

 

   

   
 

   

   

 

   

    Clustering algorithms for intelligent web 5    
 

    
 
 

   

   
 

   

   

 

   

       
 

Hierarchical algorithms are represented using proximity matrix (distance matrix) 
assuming it is symmetric which means that it require the storage of 1 2

2 n  proximities, 
where n is the number of elements (Tan et al., 2005). The total space complexity is O(n2) 
and the time required for computing the proximity matrix is O(n2) (Xu and Wunsch, 
2008). In general, agglomerative hierarchical clustering do not have difficulties in 
selecting initial points as the algorithm will starts from single clusters. But they are 
expensive algorithms in terms of time and space which limit their usage with large-scale 
datasets (Xu and Wunsch, 2005). We will focus on agglomerative hierarchical algorithms 
in this paper such as single-link, average-link and MST single-link algorithms. 

Figure 1 A dendrogram that represents divisive vs. agglomerative clustering (see online version 
for colours) 

 

Note: Two clusters are generated when cutting the dendrogram at a specific level. 

3.2 Partitional clustering 

The partitional algorithms have fixed number of clusters where the data is divided into a 
number of subsets (Mocian, 2009). The most common example is the K-means algorithm 
that starts by selecting random means for K clusters and assign each element to its nearest 
mean. K-means algorithms are O(tkn), where t is the number of iterations (Xu and 
Wunsch, 2008), k denotes the number of clusters and n the size of the data being 
clustered. These algorithms use a number of relocation schemes that provide optimisation 
to the clusters, which means the clusters can be refined at each revisiting step and thus 
giving an advantage over hierarchical clustering (Mocian, 2009). 

3.3 Density-based clustering 

In density-based algorithms, the cluster is a dense region of data objects. The points 
density is higher inside the cluster than outside the cluster. It is used the most when the 
shapes of the clusters are irregular and contain noise and outliers (Ester et al., 1996). 
DBSCAN is an example of density-based algorithms. In the worst case, the time 
complexity for this algorithm is O(n2), but in low dimensional spaces the time would be 
reduced to O(n logn) (Tan et al., 2005). 
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3.4 Meta-search controlled clustering 

The meta-search controlled clustering approach treats clustering as an optimisation 
problem where a global goal criterion is to be minimised or maximised (Ester et al., 
1996). Even though these algorithms provide flexibility, their runtime is unacceptably 
high. Cluster detection can be performed using genetic algorithms or two-phase greedy 
strategy (Ester et al., 1996). 

In our paper, we will focus on hierarchical, partitional and density-based algorithms. 
Next, we discuss these algorithms in details. 

4 Concepts and terms 

4.1 Distance and similarity measures 

Any clustering algorithm has a similarity factor (proximity matrix) in order to organise 
similar objects together. It is important to understand the measures of similarity. What 
makes two clusters join? What makes two points similar? And how to calculate the 
distance (dissimilarity)? 

Xu and Wunsch (2005) defined the function of distance or dissimilarity on a dataset X 
in their survey paper of clustering algorithms by representing an n ∗ n symmetric 
proximity matrix for a dataset of n elements where the (i, j)th element represents the 
similarity or dissimilarity measure for the ith and the jth pattern. 

The family of Minkowski distances is a very common class of distance functions 
(Hammouda, 2002) and can be represented as follows: 

( ) ( ), ωi j i jp p p pD −= ∑  (1) 

where w is a parameter with a value greater than or equal to 1. Based on the value of w 
different distance functions can be represented such as Hamming distance (w = 1), 
Euclidean distance (w = 2) and Tschebyshev distance (w = ∞). Other similarity measures 
are cosine correlation measure and Jaccard measure (Hammouda, 2002) further 
discussion can be found in Xu and Wunsch (2005). 

4.2 Dendrogram data structure 

One of the basic structures in the clustering environment is the dendrogram, which is a 
tree data structure that is used to form the hierarchical cluster. Figure 2 shows a sample 
dendrogram with four levels. The dendrogram can be represented as a set of triples  
S = {[d, k, {…}]} where d represents the threshold, k is the number of clusters and {…} 
is the set of clusters. Figure 2 shows a dendrogram of detecting a cluster in a group of 
five users based on their distance similarities. The dendrogram could be represented by 
the following set S = {[0, 5, {{U1}, {U2}, {U3}, {U4}, {U5}}], [1, 4, {{U1, U2}, {U3}, 
{U4}, {U5}}], [2, 2, {{U1, U2, U3}, {U4, U5}}], [3, 1, {U1, U2, U3, U4, U5}]} 
(Marmanis and Babenko, 2009). The dendrogram represents a set of clusters. Most of the 
algorithms considered in this paper are hierarchical algorithms. 
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Figure 2 Dendrogram structure (see online version for colours) 

 

4.3 Proximity between clusters 

Proximity calculation is the most important step in identifying clusters. It is used to 
measure how close are the data object to each other or how far they are, and differs 
according to the algorithm in use. For example, agglomerative hierarchical clustering 
techniques such as single-link, complete link and group average have different ways to 
determine the proximity threshold. The single-link defines the proximity as the closest 
distance between two elements in two different clusters or simply the shortest path 
between the two nodes in different clusters. Complete link calculates the largest distance 
between two points in two different clusters or the largest edge between the two nodes in 
different clusters. In the group average, the proximity is defined to be the average length 
distance of all elements from the two different clusters (Tan et al., 2005). Figure 3 
illustrates the three approaches. 

Figure 3 Cluster proximity, (a) single link (b) complete link (c) group average (see online 
version for colours) 

 
(a) (b) (c) 

5 An overview of clustering algorithms 

In this section, we discuss and compare the following six clustering algorithms: 

1 link-based algorithms 
a the single-link algorithm 
b the average-link algorithm 
c the minimum-spanning-tree single-link algorithm 
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2 the K-means algorithm 

3 the robust clustering using links (ROCK) algorithm 

4 the density-based spatial clustering of applications with noise (DBSCAN) algorithm. 

5.1 Link-based algorithms 

The link-based algorithms are agglomerative hierarchical algorithms where the 
dendrogram starts with individual objects and the proximity threshold is set to zero. Then 
the value of threshold is increased and based on that value the algorithm checks if two 
elements should be merged in one cluster or be kept disjoint. After a number of iterations, 
all the elements will belong to a single super cluster. 

The general algorithm for the hierarchical agglomerative algorithms can be described 
as shown in Algorithm 1. 
Algorithm 1 General hierarchical agglomerative algorithm 

1 Set the proximity threshold and calculate the proximity matrix 
2 Start with individual clusters 
3 Based on the threshold merge the closest clusters 
4 Update the threshold according to the new clusters 
5 Repeat steps 3 and 4 until all the elements are in one super cluster 

The single-link, average-link and minimum-spanning-tree algorithms, which are  
link-based algorithms of type agglomerative hierarchical, will be discussed next. 

5.1.1 The single-link 

5.1.1.1 Single-link approach 

The single link algorithm is based on the distance between clusters that are connected by 
at least one edge. First, it calculates the distance between the elements of the clusters. 
Then the proximity threshold is compared to the minimum distance to determine whether 
to merge the two clusters or not. The single-link distance between two clusters Ci and Cj 
could be represented by the following formula (Hammouda, 2002): 

( ) ,, min ( )j ii j x C y CC CD x y∈ ∈= −  (2) 

5.1.1.2 The single-link algorithm 

The single-link follows the general approach of the linked-based algorithms described in 
Algorithm 1. The time and space complexity of the single-link algorithm is O(n2) (Xu 
and Wunsch, 2005). This complexity will be a problem when working with very large 
data which is the case when clustering large real web datasets such as social networks. 

The single link is sensitive to noise and outliers actually suffer from the chain effect 
(Everitt et al., 2001). This effect occurs when the single link algorithm merges two 
clusters based on two points in these two clusters that are close to each other, regardless 
of the other points of the clusters that are far away. Single-link does not provide a 
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solution for this problem (Marmanis and Babenko, 2009), but algorithms such as ROCK 
could provide a solution. 

5.1.2 The average-link 

5.1.2.1 Average-link approach 

The average link algorithm is similar to the single-link algorithm but it uses different 
techniques to merge two clusters. It uses the average distance between any two points in 
the two different clusters and checks if it is less than the proximity threshold in order to 
merge the clusters. 

5.1.2.2 The average-link algorithm 

As with single-link algorithm, we start with individual clusters and merge them until one 
cluster is formed, but unlike the single link the distance of all pairs of points between the 
two different clusters need to be calculated. 

The average distance between two clusters Ci and Cj could be represented by the 
following formula: 

( ) ,
( )

,
.

j ix C y C
i j

i j

x y
C CD

C C
∈ ∈

−
=
∑

 (3) 

The time and space complexity of the average-link algorithm is O(n2) (Xu and Wunsch, 
2005). Which is similar to the single-link algorithms so it has the same problem. 

5.1.3 The minimum-spanning-tree single-link 

5.1.3.1 Minimum-spanning-tree single-link approach 

In this approach, a minimum spanning tree connects all the elements of a given set in a 
way that minimises the sum of the adjacency values for the connected elements (Wu and 
Chao, 2004). The MST single link algorithm is a combination between the single link 
algorithms and the minimum spanning tree. 

5.1.3.2 The minimum-spanning-tree single-link algorithm 

The Prim-Jarnik algorithm (Wu and Chao, 2004) is used in this approach for the 
minimum spanning tree with single technique. This algorithm builds the minimum 
spanning tree starting from a single cluster (root) as expressed in Algorithm 2. 
Algorithm 2 MST single-link algorithm 

1 Mark all elements of the graph as not visited 
2 Choose any element you like as the root and mark it visited (cluster C created) 
3 The smallest-weight edge e = (v, u) that connects one vertex v inside the clustering C is 

chosen and added to the spanning tree T. 
4 Repeat until all vertices are visited and the minimum spanning tree is formed 
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The time and space complexity of the MST single-link algorithm is O(n2) (Marmanis and 
Babenko, 2009). This is similar to the single-link and average-link algorithms. The MST 
single link algorithms results in fewer clusters than the single link algorithm because the 
proximity circle do not expand as much as it did in single link. 

5.2 The K-means 

5.2.1 K-means approach 

K-means is a partitional algorithm. It uses the idea of centroid, which is the mean of a 
group of points. It has high performance characteristics and it is one of the oldest and 
most used clustering algorithms. Figure 4 illustrates the idea of centroid. 

Figure 4 The centroid approach (see online version for colours) 

 

5.2.2 The K-means algorithm 

The K-means algorithm starts by choosing the K initial centroids. The simplest approach 
is to choose random centroids. Then the points are assigned to their closest centroid to 
form K clusters (Kanungo et al., 2002). Depending on the points assigned to the cluster 
the centroid position is updated. We repeat the update until no more points to add or the 
centroids remain unchanged. The K-means algorithm can be represented as shown in 
Algorithm 3. 
Algorithm 3 K-means algorithm 

1 Select K points as initial centroids 
2 Form K clusters by assigning each point to its closest centroid 
3 Re-compute the centroid of each cluster 
4 Repeat steps 2 and 3 until centroids are not changed 

The K-means is fast compared to other clustering algorithms. Its computational time is 
O(tkn) where t is the number of iterations, k represents the number of clusters and n is the 
number of data points we want to cluster. The space complexity for K-means is O(n) 
which is much better than link-based algorithms. 

Different runs of the K-means will produce different results since we randomly 
initialise the centroids actually this will produce poor clustering results. So choosing the 
right initial centroids is very important in order to create a good quality clusters 
(Kotsiantis and Pintelas, 2004). It is better to choose centroids in regions with high 
concentration of data points as proposed by Arthur and Vassilvitskii (2007) in their  
K-mean++ article. 
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The K-means is efficient for large datasets (Kotsiantis and Pintelas, 2004) and works 
well with numerical data. But the challenge occurs when it is used with categorical data 
such as strings since we need to find a good way to represent the nonnumeric values in a 
numerical way. 

5.3 The ROCK 

5.3.1 ROCK approach 

ROCK is an agglomerative hierarchical algorithm. It uses links as similarity measure 
rather than measures based on distance. It clusters the points that have many common 
links. As an agglomerative hierarchical algorithm it starts from single clusters and merges 
these clusters until a super single cluster is formed. For the ROCK algorithm, we need to 
define a minimum number of clusters that we want to form in order to stop the algorithm 
before all the elements are grouped in one single cluster. 

5.3.2 Goodness measure 

In the process of merging clusters in the ROCK algorithm, we need to determine the best 
pair of clusters to merge together. Thus, the goodness measure is used. Actually for 
ROCK algorithm, the best clusters are those that maximise the goodness measure. The 
goodness measure for two clusters Ci and Cj is represented as follows (Rajeev et al., 
1999): 

( ) [ ]
( )1 2 ( ) 1 2 ( ) 1 2 ( )

,
, i j

i j f θ f θ f θ
i j i j

C Clink
C Cg

n n n n+ + +
=

+ − −
 (4) 

where link[Ci, Cj] represents the number of links between clusters Ci and Cj that is 

( ),a rlink p p∑  (5) 

Any pairs of clusters that will maximise the goodness measure will be the best pairs to 
merge. With algorithms that are based on similarity distance only, it will be difficult to 
determine if two clusters are separate because this kind of measurement may merge two 
clusters if there are two points close together even though these points do not have large 
number of common neighbours (Xu and Wunsch, 2008). Thus, the ROCK algorithm uses 
links as its name implies. There is a link between two data points if a common neighbour 
exists between them. For the ROCK algorithm to merge two clusters the focus will be on 
the number of links ni, nj between all pairs points of the two clusters Ci, Cj. The large 
number of links should indicate a higher probability that the two points belong to the 
same cluster and should give the best cluster. 

5.3.3 The ROCK algorithm 

The ROCK algorithm needs the following arguments: 

1 the set of points that we want to cluster 

2 the minimum number of clusters to have to stop the ROCK algorithm before all 
points are merged in one cluster 
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3 proximity that is required between two points in order to form a link between them. 

The ROCK algorithm could be expressed as shown in Algorithm 4. 
Algorithm 4 ROCK algorithm 

1 Create a cluster for each point 
2 Use goodness measure to evaluate if two clusters should be merged or not (the best are the 

one those maximise the value of goodness measure) 
3 Repeat step 2 until the number of clusters formed is equal to the minimum number to stop 

or the number of cluster doesn’t change between iterations 

The space complexity of the ROCK algorithm is O(n2) (Marmanis and Babenko, 2009). 
While the time complexity is O(n2 log n)(Rajeev et al., 1999). 

ROCK algorithm is best used with categorical data such as keywords, Boolean 
attributes it uses the Jaccard coefficient to measure the similarity (Kotsiantis and Pintelas, 
2004) and it works well on large dataset. One of the advantages of using the ROCK 
algorithm is its ability to handle outliers effectively. Outliers are point that lies in a far 
distance from the other points. Which means these points can be easily discard, as they 
will never participate in the clustering process (Rajeev et al., 1999). 

5.4 The DBSCAN 

5.4.1 DBSCAN approach 

The DBSCAN algorithm is a density-based algorithm that uses density as a measurement 
other than links or distance between points. 

Density-based algorithms are based on using density to identify the boundaries of 
objects. So clusters are identified based on points density within a specific region.  
Figure 5 explains this concept where we can identify three clusters in the figure. The 
points that do not belong to the clusters are identified as noise and DBSCAN is used to 
discover clusters and noise in a dataset. 

Figure 5 Density-based clustering (see online version for colours) 

 

The DBSCAN can be described as follows (Figure 6): any two core points should be put 
in the same cluster if they are close to each other within a distance Eps (Xu and Wunsch, 
2008). Where Eps, stands for epsilon, is a value that helps to define an epsilon 
neighbourhood for any given data point p (Ester et al., 1996). 
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Figure 6 DBSCAN core points, border points and noise 

 

To understand the concept of centre points let us check Figure 6 that is similar to the 
figure in Ester et al. (1996). The large circles are the epsilon neighbourhood for points p 
and q each of them is a centre of one of the circles. The circle radius is Eps and minPoints 
represents the minimum number of points that must be inside the circle for a data point to 
be considered a core point. The points that are on the border of the cluster are called 
border points. A point p1 is directly density-reachable from a data point p2 with respect to 
Eps and minPoints if there is a list of points p1, …, pn, p1 = q, pn = p such that pi+1 is 
directly density-reachable from pi (Ester et al., 1996). The following two conditions 
should be met: 

1 p1 inside the epsilon neighbour of p2 

2 there are more than minPoints data points inside the epsilon neighbourhood of p2. 

5.4.2 The DBSCAN algorithm 

The DBSCAN algorithm is expressed in Algorithm 5. 
Algorithm 5 DBSCAN algorithm 

1 Define the points as core, border, or noise points. 
2 Eliminate noise points. 
3 Put an edge between all core points that are within Eps of each other. 
4 Make each group of connected core points into a separate cluster. 
5 Assign each border point to one of the clusters of its associated core points. 

The time complexity for the DBSCAN algorithm is O(n2) (DBSCAN, 2012), where n is 
the number of points. DBSCAN can handle noise and different shape clusters because it 
is based on density. It can discover many clusters that are not found by the K-means 
algorithm. But this algorithm will have problems with clusters of very different densities 
as the algorithm requires that the object neighbours have enough high density (Xu and 
Wunsch, 2005) and with high-dimensional data (Tan et al., 2005). The DBSCAN uses 
R*-tree in order to improve the queries of determining the points within the Eps distance 
(Kotsiantis and Pintelas, 2004). R*-tree will reduce the time complexity of the DBSCAN 
to O(n logn)(Ester et al., 1996). 
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6 Analysis and discussion 

In this section, we discuss the complexity of clustering algorithms and other related 
issues. There are many criteria that decide the use of one algorithm over the others. The 
two main criteria are time complexity of these algorithms and do they handle data with 
high dimensionality. 

6.1 Large datasets 

To deal with a large number of elements we need to evaluate the computational 
complexity of the algorithm under consideration, in other words how long does this 
algorithm take to construct the cluster. There is a big difference between clustering 
groups of people on Facebook with millions of registered users and clustering a local 
newsgroup of some hundred users. To understand how crucial is the data size we need to 
understand how each algorithm deals with the memory size (space complexity) and the 
number of operations performed to cluster a set of data (time complexity). Table 1 shows 
both of these metrics for the algorithms discussed. Here, k denotes the number of clusters, 
t the number of iterations, and n the size of the data being clustered. It is obvious that the 
problem is with the O(n2) algorithms specially when n is large. Xu and Wunsch (2005) 
compared the time and space complexities of these algorithms and provided an additional 
algorithms that can handle very large datasets such as CLARA, CLARANS and BIRCH. 
Table 1 Space and time complexities for clustering algorithms 

Algorithm name Space complexity Time complexity 

Single-link O(n2) O(kn2) 
Average-link O(n2) O(kn2) 
MST single-link O(n2) O(n2) 
K-means O(n+ k) O(tkn) 
ROCK O(n2) O(n2 log(n)) 
DBSCAN O(n2) O(n2) or O(nlog(n)) with R*-tree 

It is obvious that hierarchical clustering algorithms are not suitable for large datasets 
because of their complexities. The K-means is the most efficient algorithm among them 
as the complexity is almost linear (Xu and Wunsch, 2005), but it cannot handle 
categorical data which is very important when clustering the web. DBSCAN can be 
improved by using spatial indices on the data points such as R*-tree that will reduce the 
time complexity for it from O(n2) to O(n log(n)) and generates more efficient queries (Xu 
and Wunsch, 2005). It is important to mention that indexing spatial data faces difficulties 
in high dimensions and this subject is an active area of research (Marmanis and Babenko, 
2009). 

6.2 High dimensionality 

The world that we deal with is of three-dimensionality and if we want to cluster worlds of 
higher dimensionalities we need to know that these worlds are governed by different 
rules and different proximities (Marmanis and Babenko, 2009). Actually higher 
dimensionality means larger computation which will slow the algorithm down. 
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High dimensionality produces a problem in data separation as the distance between 
the point and its nearest neighbour has no difference than the distance from that point to 
other points when the dimensionality is high enough (Xu and Wunsch, 2008). The ‘curse 
of dimensionality’ is a problem that is related to high dimensionality. The term was 
introduced by Bellman to indicate the exponential growth of complexity in a high 
dimensionality situation (Xu and Wunsch, 2005), which indicates that the distance 
between any set of points in high dimensions are the same. In such situation there will be 
no effect for clustering algorithms that are based on distance measurements. Aggarwal 
(2002) provided a solution to this problem in. 

7 Related works 

Many algorithms for community detection have been proposed in the past. Newman and 
Girvan (2004) proposed a method for discovering communities based on hierarchical 
divisive algorithms where an edge is removed iteratively from the network to split it into 
communities. Divisive algorithms were rarely used for community detection at that time 
as most of the studies were based on agglomerative algorithms. The main idea of their 
algorithm is to remove the edge with the highest betweenness. One fast method to 
measure edge betweenness is the shortest-path betweenness by measuring all the shortest 
paths passing through a giving link. Once an edge removed a recalculation of the edge 
betweenness is needed for all edges which leads to high computational costs. The process 
continues until the final communities consist of single nodes. 

Fortunato et al. (2004) implemented a hierarchical clustering algorithm based on the 
work of Newman and Girvan (2004). Their work was based on using centrality measure 
to iteratively find and remove edges in the network. Their work shows that even the 
algorithm runs in O(n4), it is powerful when dealing with mixed and hard detectable 
communities. 

Newman (2004) also proposed another qualitative method for identifying 
communities called modularity. The modularity method uses a quantity function Q to 
measure if a specific division is meaningful when identify communities. The algorithm 
used was simple with reasonable running time than the other proposed algorithms at that 
time with worst time complexity of O(n2) on sparse network of nodes n. This method has 
become very popular and widely used. However, it has limits as claimed by Fortunato 
and Barthelemy (2007) who showed in their paper that modularity has scale that depends 
on the size of the network and any module that is smaller than the scale might not be 
determined. Li et al. (2008) proposed a quantitative modularity density measure to get 
over the limits of the regular modularity method proposed by Newman and Girvan. They 
used both the nodes and the edges in their method and showed that the optimisation of the 
quantitative modularity density measure will not affect the network division process 
which provides better detection for communities. But the method is still NP-hard. 

Clauset et al. (2004) proposed another algorithm called the CNM algorithm. The 
CNM algorithm is a bottom-up agglomerative clustering method that uses greedy 
techniques to combine and merge clusters in a network. The algorithm works similarly as 
in Newman (2004) and gives similar results for the communities found. But it is more 
efficient in identifying communities since its time performance in worst case drops to 
O(m ∗ d ∗ logn). 
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8 Case study and evaluation 

In this section, we use a case study to further explain clustering algorithms. We will 
explain the scripting language we have used and how we setup the environment to run the 
algorithms and obtain the results. Also we will discuss the results obtained using each 
algorithm. 

The issue of identifying articles of similar topics is of great potential in the intelligent 
web environment, so in our case study we will use clustering algorithms to help in 
grouping similar articles. We collected the data from Delicious.com (2012), which is a 
social bookmarking service that allows users to share, store and discover web bookmarks. 
Since we are dealing with categorical data and keywords, represented by the articles 
titles, we will use ROCK and DBSCAN algorithms to define the different clusters and 
group the similar titles together. 

8.1 Data collection 

For our two experiments, we have collected a list of 48 titles for different articles from 
Delicious.com and saved them in CSV file. For each title, we assigned a unique ID and a 
username of the person who bookmarked that title. Two or more users can bookmark the 
same title. A sample of the dataset (11 out of 48 titles) is illustrated in Table 2. 

Table 2 Sample dataset collected from Delicious.com 

ID Name Title 

776 user01 Google sites to add social networking in ‘layers’ 

774 user01 40 Best And Highly Useful Websites For Adobe Photoshop Tutorials 

740 user01 Nikon D7000: Camera Road Test With Chase Jarvis | Chase Jarvis Blog 

770 user01 Twitter is NOT a Social Network, Says Twitter Exec 

722 user01 An open source collaborative network 

744 user02 Google sites to add social networking in ‘layers’ 

710 user02 40 Best And Highly Useful Websites For Adobe Photoshop Tutorials 

730 user03 Google sites to add social networking in ‘layers’ 

777 user03 40 Best And Highly Useful Websites For Adobe Photoshop Tutorials 

756 user03 An open source collaborative network 

733 user03 How To Discover Your Money Making Niche 

8.2 Setting up the environment 

The two algorithms are implemented in Java language and to execute and debug them we 
used BeanShell, which is a free Java interpreter. The latest Java JDK and Apache Ant 
should be installed in order for the BeanShell interpreter to work correctly. All of the 
code commands were executed through the command line in Windows OS environment. 
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8.3 ROCK algorithm 

First, we used the ROCK algorithm to cluster the dataset. The algorithm uses the Jaccard 
coefficient to measure the similarities between different titles. It compares the common 
terms or keywords in the titles and based on that similarity titles are grouped together. 

To start the experiment, we have loaded Delicious titles using the 15 most common 
terms only and stored them in an array. The ROCK algorithm invoked to cluster the 
dataset with a minimum number of clusters equal to 5. This parameter will allow the 
ROCK algorithm to stop before grouping all the data in one cluster. The threshold of 0.2 
is used to represent the needed proximity between two points to be linked. Algorithm 6 
represents the code used to execute the algorithm and print the result. 
Algorithm 6 ROCK algorithm execution code 

1 DeliciousDataset ds = DeliciousData.createDataset(15); 
2 DataPoint[] dps = ds.getData(); 
3 ROCKAlgorithm rock = new ROCKAlgorithm(dps, 5, 0.2); 
4 Dendrogram dnd = rock.cluster(); 
5 dnd.print(16); 

Table 3 ROCK algorithm results 

Clusters for: level-16, goodness = 1.973889261532508 

Cluster no. ID Title 
1 799 Nikon D7000: Camera Road Test With Chase Jarvis | Chase Jarvis Blog 
1 688 Nikon D7000: Camera Road Test With Chase Jarvis | Chase Jarvis Blog 
2 708 40 Best And Highly Useful Websites For Adobe Photoshop Tutorials 
2 774 40 Best And Highly Useful Websites For Adobe Photoshop Tutorials 
2 710 40 Best And Highly Useful Websites For Adobe Photoshop Tutorials 
3 722 An open source collaborative network 
3 715 An open source collaborative network 
4 520 Twitter is NOT a Social Network, Says Twitter Exec 
4 566 Twitter is NOT a Social Network, Says Twitter Exec 
4 744 Google sites to add social networking in ‘layers’ 
4 730 Google sites to add social networking in ‘layers’ 
4 776 Google sites to add social networking in ‘layers’ 
4 770 Twitter is NOT a Social Network, Says Twitter Exec 
5 740 Nikon D7000: Camera Road Test With Chase Jarvis | Chase Jarvis Blog 
5 720 Nikon D7000: Camera Road Test With Chase Jarvis | Chase Jarvis Blog 
6 777 40 Best And Highly Useful Websites For Adobe Photoshop Tutorials 
6 795 40 Best And Highly Useful Websites For Adobe Photoshop Tutorials 
7 681 Twitter is NOT a Social Network, Says Twitter Exec 
7 500 Twitter is NOT a Social Network, Says Twitter Exec 
7 790 Twitter is NOT a Social Network, Says Twitter Exec 
7 780 Google sites to add social networking in ‘layers’ 
8 735 40 Best And Highly Useful Websites For Adobe Photoshop Tutorials 
8 726 40 Best And Highly Useful Websites For Adobe Photoshop Tutorials 
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The results of our experiment for the ROCK algorithms at level 16 shows eight clusters, 
(Table 3). We noticed that the algorithm clustered similar titles such as title ID 799 and 
title ID 688 together. On the other hand, there are articles with similar titles but the 
algorithm did not merge them in one cluster such as title ID 520 that is in cluster 4 and 
title ID 681 that is in cluster 7. The algorithm also defined the non-obvious clusters such 
as the titles in cluster 4; which contains different titles that are grouped together because 
they contain similar terms related to ‘social network’ topic. The ROCK algorithm will 
compare titles based on important keywords in these titles. 

8.4 DBSCAN algorithm 

We applied the DBSCAN algorithm to the same dataset. The algorithm used also the 
Jaccard coefficient to measure the similarities between different titles. To start the 
experiment we have loaded Delicious titles using the most 15 common terms only and 
stored them in an array. A Cosine distance is used as a distance metric. The DBSCAN 
algorithm invoked to cluster the dataset with a distance metric, Eps (neighbour 
threshold), minPoints and the term frequency. Algorithm 7 represents the code used to 
execute the algorithm and print the result. 
Algorithm 7 DBSCAN algorithm execution code 

1 DeliciousDataset ds = DeliciousData.createDataset(15); 

2 DataPoint[] dps = ds.getData(); 

3 CosineDistance cosD = new CosineDistance(); 

4 DBSCANAlgorithm dbscan = new DBSCANAlgorithm(dps,cosD,0.7,2,true); 

5 dbscan.cluster(); 

The results of our experiment for the DBSCAN algorithms are shown in Table 4. The 
results were more accurate than the ROCK algorithm results. All similar titles are 
clustered together such as clusters 2 and 3 as you can notice the titles are exactly similar 
to each other. Non-similar titles in cluster 1 (title ID 776, title ID 566) and cluster 4 (title 
ID 722, title ID 711) also defined by the algorithm, where in cluster 1 it grouped the titles 
based on the keyword ‘social networks’ and in cluster 4 it grouped all the titles related to 
‘open source’ topic. The algorithm also was able to recognise the noise elements where 
these points do not belong to any cluster. 

8.5 Results 

From both experiments, the DBSCAN and the ROCK algorithms produce good clustering 
results for the dataset. We noticed that the DBSCAN advanced the ROCK algorithm as it 
able to find the correct clusters and outliers as shown in Table 4. The ROCK is based on 
measuring similarity between two clusters as it finds the common neighbours for the two 
clusters. But relaying on similarity might make the algorithm merge two clusters due to 
closeness even if they contain outliers or noise. 
 

 



   

 

   

   
 

   

   

 

   

    Clustering algorithms for intelligent web 19    
 

    
 
 

   

   
 

   

   

 

   

       
 

Table 4 DBSCAN algorithm results 

DBSCAN clustering with NeighbourThreshold = 0.7 minPoints = 2 

Cluster no. ID Title 

1 776 Google sites to add social networking in ‘layers’ 
1 566 Twitter is NOT a Social Network, Says Twitter Exec 
1 744 Google sites to add social networking in ‘layers’ 
1 780 Google sites to add social networking in ‘layers’ 
1 790 Twitter is NOT a Social Network, Says Twitter Exec 
1 500 Twitter is NOT a Social Network, Says Twitter Exec 
1 730 Google sites to add social networking in ‘layers’ 
1 770 Twitter is NOT a Social Network, Says Twitter Exec 
1 681 Twitter is NOT a Social Network, Says Twitter Exec 
1 520 Twitter is NOT a Social Network, Says Twitter Exec 
2 774 40 Best And Highly Useful Websites For Adobe Photoshop Tutorials 
2 708 40 Best And Highly Useful Websites For Adobe Photoshop Tutorials 
2 777 40 Best And Highly Useful Websites For Adobe Photoshop Tutorials 
2 726 40 Best And Highly Useful Websites For Adobe Photoshop Tutorials 
2 795 40 Best And Highly Useful Websites For Adobe Photoshop Tutorials 
2 735 40 Best And Highly Useful Websites For Adobe Photoshop Tutorials 
2 710 40 Best And Highly Useful Websites For Adobe Photoshop Tutorials 
3 740 Nikon D7000: Camera Road Test With Chase Jarvis | Chase Jarvis Blog 
3 530 Nikon D7000: Camera Road Test With Chase Jarvis | Chase Jarvis Blog 
3 688 Nikon D7000: Camera Road Test With Chase Jarvis | Chase Jarvis Blog 
3 685 Nikon D7000: Camera Road Test With Chase Jarvis | Chase Jarvis Blog 
3 799 Nikon D7000: Camera Road Test With Chase Jarvis | Chase Jarvis Blog 
3 720 Nikon D7000: Camera Road Test With Chase Jarvis | Chase Jarvis Blog 
4 722 An open source collaborative network 
4 590 An open source collaborative network 
4 711 XWiki -Open Source Wiki and Content-Oriented Application Platform 
4 600 An open source collaborative network 
4 715 An open source collaborative network 
4 756 An open source collaborative network 
5 690 Apple: Sorry, Steve Jobs Isn’t a Ninja 
5 736 Apple: Sorry, Steve Jobs Isn’t a Ninja 
6 499 How To Discover Your Money Making Niche 
6 733 How To Discover Your Money Making Niche 
7 743 How To Create WordPress Themes From Scratch Part 1 
7 533 How To Create WordPress Themes From Scratch Part 3b 
7 694 How To Create WordPress Themes From Scratch Part 2 
7 510 How To Create WordPress Themes From Scratch Part 3a 
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Table 4 DBSCAN algorithm results (continued) 

DBSCAN clustering with NeighbourThreshold = 0.7 minPoints = 2 

Cluster no. ID Title 

Noise 540 iPhone SDK 3.0 Playing with Map Kit -ObjectGraph Blog 
Noise 742 This Is The Second Time A Google Engineer Has Been Fired For 

Accessing User Data 
Noise 577 Enhance your web forms with new HTML5 features 
Noise 745 Resize or Move a Complete Flash Animation in One Go 
Noise 746 10 Things You Didn’t Know About the New #Twitter/via @gigaom 

#news #sm 
Noise 732 How To Handle Customers During Virtual Assistant Problems 
Noise 705 article on social media ad campaigns 
Noise 587 The Business Plan 
Noise 791 CSS Color Names 
Noise 601 Typography: Web Style Guide 3 
Noise 753 in 4 US Adults Now Use Mobile Apps [STATS] 

9 Conclusions 

Clustering algorithms are an important approach to divide and analyse data. There are 
many different types of clustering each with its own technique. We can apply them on 
many phenomena in this world actually any dataset that consists of elements are qualified 
for applying clusters. We have discussed six clustering algorithms in this paper: single 
link, average link, MST single link, K-means, ROCK, and DBSCAN. The discussion was 
based on how accurate is to apply them on the social web. 

The single-link, average-link, and MST single-link algorithms are agglomerative 
hierarchical algorithms. They do not perform efficiently (both with respect to time and 
space) on large datasets even though they are easily implemented algorithms. 

The K-means algorithm is a partitional algorithm, which is more efficient than  
link-based algorithms. But it does not work with categorical data since it relies on the 
idea of centroid. Moreover it cannot handle outliers (the points that are far away from the 
main clusters) (Xu and Wunsch, 2005). 

The ROCK algorithm is a hierarchical agglomerative algorithm that can handle 
categorical data since it relies on the links as measures more than the distance. But it has 
high time and space complexities. 

The DBSCAN algorithm is a density-based algorithm that uses point density to 
identify clusters in a space. It can handle outliers even though its time and space 
complexity are high. 

The algorithms discussed in this paper are used for the identification of groups of 
users and data on a website. We can combine algorithms such as the K-means with other 
algorithms. K-means is the preferred to use since it is simple and fast and can run on 
parallel computational platforms. Combining different algorithms together will maximise 
the benefits of these algorithms and guarantees the quality of resulted clusters (Kotsiantis 
and Pintelas, 2004). One example would be combining the efficient K-means algorithm 
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with the powerful ROCK algorithm (if the data is Boolean or categorical) or DBSCAN 
algorithm (if the data is spatial). One scenario would be using K-means on the high-level 
clusters then process them with the ROCK or the DBSCAN algorithm. 
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