Static balancing of highly reconfigurable articulated wheeled vehicles for power consumption reduction of actuators
by Aliakbar Alamdari; Venkat N. Krovi
International Journal of Mechanisms and Robotic Systems (IJMRS), Vol. 3, No. 1, 2016

Abstract: This paper presents the static balancing of a highly reconfigurable articulated wheeled vehicles with multiple leg-wheel subsystem. Articulated wheeled vehicles are a class of mobile robots, which offer immense possibilities for enhanced locomotion-performance of autonomous mobile vehicles by virtue of the enormous reconfigurability within their articulated structure. However, changing the vehicle platform elevation could require considerable actuator power because of the payload. Hence, the main focus of this paper is to carefully evaluate various means for reducing or eliminating these static forces, principally due to the mass- and inertia-distribution within the system. It is noteworthy that although known apriori, such static forces often are significantly dependent upon the articulated-wheeled vehicle configuration. Hence, realising the static balancing for all possible configurations of vehicle imposes special set of conditions on the geometric, mass and inertial parameters. In this paper, elastic elements such as springs are used in conjunction with reconfigurable four-bar mechanism to achieve the static balancing. The essential principle is to realise that the total potential energy including the elastic potential energy stored in springs and gravitational potential energy becomes constant. Finally, we show that elimination of static torques due to gravity reduces the torque requirements and provides much more efficient design with significant reduction of the actuator sizes.

Online publication date: Sat, 18-Jun-2016

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Mechanisms and Robotic Systems (IJMRS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com