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Abstract: The available bandwidth is a crucial metric of networks performance which is applied 
in congestion control, route selection, traffic analysis and QoS management. PathChirp is a  
well-known tool to estimate available bandwidth based on an approach of self-induced 
congestion, which exponentially increases the rate of probing packets in each packet train. But 
the inappropriate gaps of probing rates often result in a large deviation of estimated available 
bandwidth. In order to solve this problem, we propose HybChirp, an active probing tool which 
uses linearly spaced probing packets (lin-chirps) and exponentially spaced probing packets  
(exp-chirps) in combination. HybChirp improves PathChirp by adopting the hybrid of lin-chirps 
and exp-chirps, while inherits the advantages of PathChirp such as the short convergence time 
and low overhead. The NS-2 simulation results have shown that HybChirp outperforms 
PathChirp and Pathload in terms of accuracy, overhead, convergence time and adaptivity. 
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1 Introduction 

Available bandwidth (AB) is one significant metric to 
evaluate the performance of network, which is the minimum 
AB among all links on an end-to-end path. The estimated 
AB plays an important role in network protocols of routing 
selection, admission control, congestion control, and QoS 
management (Kavitha and Sankaranarayanan, 2014). 
Therefore, many researchers paid attention to design an 
efficient and accurate tool to estimate the AB. 

The tools of bandwidth estimation can be divided into 
two categories: active probing and passive measurement. 
Active probing tools mostly use packet trains for probing, 
such as RTT (Imai et al., 2013), Pathload (Jain and 
Dovrolis, 2002), PathChirp (Ribeiro et al., 2003), AProbing 
(Xie et al., 2014) and trains of packet pairs (TOPP) 
(Melander et al., 2000). A packet train is defined as a burst 
of packets sent from the same source to the same destination 
(Jain and Routhier, 1986). Passive measurement does  
not require any dedicated probing packets, but collects 
useful information by monitoring the packets in real 
communication, for example, cPEAB (Tursunova et al., 
2010) and APBE (Park and Roh, 2010). 

PathChirp is a well-known active probing tool for 
estimating AB using self-induced congestion. Self-induced 
congestion relies on an intuitive idea: if the probing bit-rate 
exceeds the actual AB, then some probing packets will be 
queued at a router and the transmission delay will be 
increased. Otherwise, the packets will not suffer from 
incremental queuing delay. PathChirp adopts an 
exponentially spaced packet train (called as a chirp) for 
probing, where the probing rates of chirps increase 
exponentially. The inter-arrival time of the probing packets 

decreases almost exponentially. Then the estimated 
bandwidth is proportional to the reciprocal of that time. 

PathChirp results in a large deviation of estimated 
bandwidth because the probing bit-rate often changes 
sharply. Consider a network path whose actual AB is A and 
two probing packets are successively injected into this 
network with the rates of M and N respectively, where  
M ≤ A ≤ N. When the first packet arrives, its queuing delay 
is almost zero since M ≤ A. When the second packet arrives, 
the receiver will detect an increase of queuing delay. The 
inter-arrival time is then used to estimate AB. The estimated 
bandwidth is accurate when A approximates to N. But the 
large deviation is introduced when A is closer to M. 

This paper proposes HybChirp, an enhanced tool of 
PathChirp, to improve the accuracy of bandwidth 
estimation. HybChirp employs both linearly spaced packets 
(called as lin-chirp) and exponentially spaced packets 
(called as exp-chirp) for probing. Firstly, exp-chirps are 
used to find a reasonable range of AB, which is the same as 
PathChirp. Secondly, a fine tuning process using lin-chirps 
is operated within this range. In a lin-chirp, the difference of 
transmission rates between all successive packets are the 
same which can be adjusted small enough to satisfy the 
precision of bandwidth estimation. In this way, HybChirp 
estimates AB efficiently and accurately. 

We have evaluated HybChirp in NS-2 which is a 
discrete event simulator in computer networks. The 
simulation results have indicated that HybChirp achieve 
better performance compared with PathChirp and Pathload 
in terms of accuracy, overhead and convergence time. 

The rest of this paper is organised as following. In 
Section 2, we introduce the related work on AB estimation 
and the basic technique of PathChirp. Section 3 illustrates 
the design of HybChirp and Section 4 evaluates HybChirp 
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by comparing it with PathChirp and Pathload. Finally, we 
draw a conclusion in Section 5. 

2 Related work 

2.1 Existed methods of AB estimation 

Active probing method launches end-to-end probing packets 
into a network, and then estimates the AB by analysing the 
records of probing packets and their responding packets 
(Guerrero and Labrador, 2010). Active probing is flexible 
and convenient, but its additional probing traffic may 
influence the real traffic of network. Passive measurement 
monitors the communication of packets in the 
sender/receiver over a given period, and then calculates AB 
by the traffic information. Obviously, passive measurement 
has little effect on real network traffic, but requires 
abundant packet samples. If the packet samples are not 
enough, the accuracy of passive measurement will be 
influenced. Our study focuses on the methods of active 
probing. 

In the early stage, AB is calculated by dividing the total 
amount of probing packets by the transmission period. For 
example, in Cprobe (Carter and Crovella, 1996), a dedicated 
server sends a short stream of probing packets and the 
receiver records the arrival time of the first packet and the 
arrival time of the last packet. The AB equals to the total 
length of all probing packets divided by the period between 
two records of arrival time. Cprobe-like methods, such as 
Pathchar (Downey, 2000) and Pipechar (Jin et al., 2001), are 
simple but result in high cost due to abundant probing 
packets. 

Some researchers use probing packets in an efficient 
way. The technique of packet pair/train dispersion (PPTD) 
(Jacobson, 1998) based on a probe gap model is studied. 
This technique relies on an assumption that the link with the 
minimum AB must be the link with the minimum capacity 
in an end-to-end path. PPTD estimates AB by analysing the 
time gaps between successive probing packets at the 
receiver, such as IGI (Hu and Steenkiste, 2006). TOPP is an 
extension to the PPTD technique, which gets rid of the 
unrealistic assumption by detecting the bottleneck link first. 
A comparatively new technique uses well-separated probing 
packet pairs with different spacing. It estimates AB from the 
time-averaged spacing of packets at the receiver, for 
example, Nettimer (Lai and Baker, 2001) and Pathrate 
(Dovrolis et al., 2001). However, the accuracy of estimated 
bandwidth is sensitive to the selection of spacing between 
packet pairs. And all routers involved in the end-to-end path 
are assumed to employ FIFO queuing rule, which is not 
applicable in most networks. 

The newly methods of self-loading periodic streams 
(SLoPS) are based on the observation of the queuing delay 
of successive periodic probing packets. The delay increases 
when the rate of probing packets is higher than the AB on 
an end-to-end path. That is, the queuing delay of a packet 
stream shows an increasing trend when the rate of probing 

packet is higher than the AB. The widely known 
implementations of SLoPS are Pathload and PathChirp. 

Pathload is an iterative algorithm which uses multiple 
constant bit-rate streams for producing a single estimation. 
The basic idea of Pathload is that the one-way delay of a 
periodic packet stream shows the increasing trend when the 
stream rate (SR) is larger than the AB. Denote ai as the 
arrival time of the ith packet and ti is the timestamp of 
transmission. The relative one-way delay of each packet is 
calculated as Di = ai – ti. When SR > AB, the stream creates 
a short-term overload in a bottleneck link. The queueing 
delay of packet i at the bottleneck link is expected to 
increase. Pathload firstly transmits constant bit-rate streams 
with a low SR and then increases the SR step by step, while 
the trend of packet delay Di is closely monitored. When  
SR > AB, the relative one-way delay {D1, D2, …, Dk} of the 
stream packets are expected to have an increasing trend and 
then the current SR is considered to be AB, shown in  
Figure 1 (Jain and Dovrolis, 2002). 

Compared with Pathload, PathChirp decreases the 
number of probing packets while obtaining an acceptable 
result of estimated bandwidth. The design of PathChirp is 
introduced in detail in Subsection 2.2. This paper proposes a 
new method HybChirp to improve the accuracy of 
PathChirp. 

Figure 1 One-way delay variations when SR > AB 

 

2.2 Introduction of PathChirp 

In PathChirp, many chirps of probing packets are sent from 
a sender to a receiver. A chirp consists of N exponentially 
spaced packets, and all packets have the same size of P 
bytes. The sender transmits the kth packet at the time tk,  
k = 1, …, N. And the transmission rate of the kth packet is 
shown in equation (1), where the interspacing time  
δk = tk+1 – tk, k = 1, …, N – 1. 

/ .k kR P δ=  (1) 

A statistical analysis of arrival packets is conducted to 
estimate AB at the receiver. Figure 2 (Ribeiro et al., 2003) 
presents the queuing delay situation of N packets in a chirp, 
where one dot represents a packet. The vertical axis presents 
the queuing delay of packets and the horizontal axis 
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presents the time when the packets are transmitted. The 
queuing delay for the kth packet is denoted as qk. An 
excursion starts with the ith packet if qi ≤ qi–1 and qi < qi+1, 
and stops with the jth packet if qj = 0 or equation (2) is 
satisfied, in this case qj decreases by a factor F from the 
maximum queuing delay experienced during this interval. 
For example, the first excursion is from the third packet to 
the seventh packet. Additionally, the length of an excursion 
shall be longer than a threshold L. If Rk is less than the 
actual AB, the first few excursions produced by bursts will 
return to zero (we call them closed excursions). Otherwise, 
the excursion ends with increasing queuing delay, like the 
second excursion in Figure 2. Suppose the starting point of 
the last excursion is packet θ with the rate of Rθ. Note that 
the last excursion is not closed. 
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For a chirp of N packets, the bandwidth calculated by each 
packet is denoted as Ek, shown as equation (3). Then the 
estimated AB calculated by the chirp is denoted as ˆ,A  
shown in equation (4). 
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If the transmission rate of probing packets changes  
within the range of [G1, G2] Mbps, Pathchirp will use 
approximately log(G1) – log(G2) packets for probing. That 
is, PathChirp estimates AB with high speed and low cost, 
because probing packets are exponentially spaced. But this 
feature also introduces a big deviation in bandwidth 
estimation. In order to improve the accuracy of PathChirp, 
we propose HybChirp which adopts linearly spaced packets 
(lin-chirp) and exponentially spaced packets (exp-chirp) 
together. 

Figure 2 A typical situation of chirp’s queuing delay 

 

3 Design of HybChirp 

In this paper, HybChirp is designed to estimate the AB on 
the path between node SND and node RCV, shown in 
Figure 3. Firstly, SND transmits a packet chirp to RCV with 
an initial rate. RCV receives the chirp and replies a value of 
estimated bandwidth. Secondly, SND sends a new chirp 
with the updated rate according to the probing strategy of 
chirps, in which lin-chirp and exp-chirp are selected 
according the feedback from RCV. Therefore, RCV keeps 
recording the delay of probing packets and calculates the 
current AB for each chirp, ˆ.A  The algorithm of bandwidth 
estimation is designed according to different probing 
strategies of chirps. The AB is finally calculated by the 
cooperation of SND and RCV. 

Figure 3 Network topology 

 

Next, the probing strategy of chirps at SND and the new 
algorithm of bandwidth estimation are described in detail. 
The parameters and notations of PathChirp are inherited. 

3.1 Probing strategy 

According to the experiments of PathChirp, exp-chirps can 
speed up the search of AB. HybChirp inherits its advantage, 
which firstly sends the exp-chirps of probing packets to 
locate a potential range of AB. Secondly, the lin-chirps of 
probing packets are used to obtain a more precise estimated 
value within this range. Therefore, the probing strategy of 
HybChirp uses exp-chirps and lin-chirps interchangeably. 
Figure 4 presents the probing strategy of HybChirp in SND, 
which includes three parts: the initial part on the top, the 
exp-chirp part on the left and the lin-chirp part on the right. 

The initial part is similar with PathChirp. SND transmits 
an exp-chirp with a rate within [Rl, Rh], where Rl is the 
lower limit of probing rates and Rh is the upper limit. The 
actual AB shall be within this range. The rates of probing 
packets in one exp-chirp grows in a geometric progression, 
Rl, γRl, γ2Rl, …, γN–1Rl, where γ is a spread factor. RCV 
calculates the estimated bandwidth of Â  using the 
algorithm in Subsection 3.2, and then replies Â  to SND. 

After sending one chirp, SND waits for the estimated 
value Â  from RCV and accordingly adjusts the values of Rl 
and Rh for sending the next exp-chirp. When ˆ ,lA R≤α  Â  
approaches Rl and the rates of probing packets are too high. 
Then Rh will be reset as Rl ∗ m and Rl will be decreased by 
dividing m. When ˆ ,hA R≥ β  Â  approaches Rh. Then Rl will 
be reset as Rh / m and Rh will be increased by multiplying m. 
Here, α, β and m are tuning parameters, 0 < β < 1 < α and  



364 W. Chi et al.  

m = 4 typically. Otherwise, the counter expcnt increases by 1. 
The algorithm reaches a stable state when Rl and Rh remain 
unchanged continuously for c1 times. That is, the AB shall 
be within a good range of * *[ , ],l hR R  where * ˆ

hR A=  and 
* ˆ / .lR A γ=  

Next, SND adopts the lin-chirps of probing packets to 
refine the estimated AB within * *[ , ].l hR R  In a lin-chirp, the 
rates of probing packets increases step by step, i.e., 

* * * *,  + , 2 ,  ...,  ,l l l hR R R RΔ + Δ  where the step Δ is a function 
of Â  as shown in equation (5). Intuitively, lin-chirps 
change the rates of probing packets slower than exp-chirps, 
which increase the accuracy of bandwidth estimation. If 

ˆ ,l hR n A R n+ Δ ≤ ≤ − Δ  SND will send the next lin-chirp 
and increase the counter lincnt by 1, where n is a tuning 
factor. Otherwise, SND will adjust Rl and Rh according to 
Figure 4 and switch to use exp-chirps. If Â  < Rl + nΔ, Rl 
and Rh will be decreased. If Â  > Rh – nΔ, Rl and Rh will be 
increased. And the retry of exp-chirps can find a better 
range of estimated bandwidth. Finally, the probing of SND 
terminates when lincnt = c2. The final estimated bandwidth 
can be simply the latest value of Â  in lin-chirps. 

ˆ0.1 Mbps, 0 1 Mbps               
ˆ0.5 Mbps, 1 Mbps 10 Mbps    

ˆ1 Mbps, 10 Mbps 300 Mbps
ˆ10 Mbps, 300 Mbps 1 Gbps   

ˆ50 Mbps, 1 Gbps                       
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Therefore, exp-chirps and lin-chirps are combined to obtain 
the AB on an end-to-end path. 

3.2 Algorithm in RCV 

In Pathchirp, all excursions are used to calculate ˆ.A  But the 
probing packets in closed excursions provide few 
information because their rates do not exceed the actual AB. 
Therefore, HybChirp only focus on the last excursion of 
each chirp and the estimated bandwidth is calculated by 
formula (6) in SND, where the starting point of the last 
excursion is packet θ with the probing rate of Rθ. When 
RCV receives an exp-chirp, the last Rθ is simply taken as ˆ.A  
When RCV receives a lin-chirp, we take the average  
(Rθ + Rθ–1) / 2 as ˆ.A  

( )1

, in a exp-chirpˆ
/ 2, in a lin-chirp  

θ

θ θ

R
A

R R −

⎧
= ⎨ +⎩
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Figure 4 Flow chart of HybChirp’s probing strat (see online version for colours) 

 



 End-to-end available bandwidth estimation using HybChirp 365 

4 Evaluation in NS-2 

HybChirp is evaluated by the NS-2 (version 2.27) simulator 
in a simple network topology which is also used in related 
works (Angrisani et al., 2006; Ali et al., 2006), shown in 
Figure 5. The link between routers R1 and R2 has the 
capacity of C (Mbps), where C = 100. Therefore, HybChirp 
is carried out at SND and RCV and the end-to-end path is 
SND-R1-R2-RCV. Other two hosts, the cross-traffic sender 
and the cross-traffic receiver, control the cross-traffic with 
the throughput of CT (Mbps), then the actual end-to-end AB 
is A = C – CT. Here, three types of cross traffic are 
considered: constant bit rate (CBR), Poisson and Pareto. 

Figure 5 The network topology in NS-2 (see online version  
for colours) 

 

We also compare HybChirp1 with two well-known tools of 
bandwidth estimation: PathChirp2 and Pathload3. PathChirp 
uses its default configurations (Ribeiro et al., 2003), i.e.,  
γ = 1.2, P = 1,000 bytes. Pathload sets the bandwidth 
resolution as 10 Mbps, and other parameters are the same as 
the paper (Jain and Dovrolis, 2002). HybChirp inherits 
PathChirp’s parameters and its probing parameters are set as 
follows: α = 1.33, β = 0.75, m = 4, n = 3, c1 = c2 = 3. These 
three tools are compared in terms of accuracy, convergence 
time, overhead and adaptivity (as applicable). This paper 
improves the precision of performance metrics by averaging 
the results of ten times repeated simulations. 

• Error metric of ε  presents the measurement error of 
estimated bandwidth, where A is the actual AB and Â  
is the estimated bandwidth. If the result of bandwidth 
estimated tool is a range of * *[ , ],l hR R  we will simply it 

by * *ˆ ( ) / 2.l hA R R= +  The lower ,ε  the more accurate 
result. 

ˆ
.A A

A
−

=ε  (7) 

• Convergence time is the total period cost in a complete 
estimation of bandwidth. Less convergence time means 
a higher speed in bandwidth estimation. 

• Overhead is the total amount of probing packets  
used in a complete estimation of bandwidth. Reducing 
overhead can decrease the impact of probing on the 
network. 

• Adaptivity, presents the real-time performance of a 
bandwidth estimation tool. A standard deviation σ is 
defined to reflect the differences between the estimated 
values and the actual values during a simulation period, 
where K estimated values are considered. A low value 
of σ means that the bandwidth estimation tool well 
follows the trend of actual AB. 
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4.1 CBR cross-traffic 

Firstly, HybChirp, PathChirp and Pathload are compared in 
the presence of CBR cross-traffic with different rates of 10, 
30, 50, 70 and 90 Mbps. 

HybChirp outperforms PathChirp and Pathload in terms 
of accuracy because its measurement errors are lowest 
under all cases of CBR cross-traffic, shown in Table 1.  
For example, in Figure 6(a), when CT = 70 Mpbs and  
A = 30 Mpbs (shown in the solid line), the estimated 
bandwidth of HybChirp is 28.6 Mbps, while the estimated 
bandwidth of PathChirp is 25.7 Mbps and the range of 
estimated bandwidth of Pathload is [20, 42] Mbps. 

Table 1 ε  of three tools under CBR cross-traffic 

CT (Mbps) 10 30 50 70 90 

HybChirp 8.0% 4.6% 5.1% 2.5% 5.3% 
PathChirp 20.5% 14.1% 15.7% 8.7% 10.9% 
Pathload 63.1% 3.3% 6.0% 1.4% 4.4% 

Figure 6(b) compares the convergence time of three tools. 
The average of convergence time in HybChirp is shortest, 
around 1 second. PathChirp uses a little longer time,  
3 seconds in average. However, Pathload costs about  
20 seconds to finish one simulation. Apparently, HybChirp 
speeds up the bandwidth estimation since that exp-chirps 
and lin-chirps are combined efficiently. 

Figure 6(c) compares the overhead of three tools used in 
one simulation. It is clear that the amount of traffic injected 
by Pathload is much more than HybChirp and PathChirp. 
For example, when CT = 10 Mpbs and A = 90 Mpbs, 
HybChirp costs probing packets of 0.26 M bytes, PathChirp 
costs almost double, while Pathload costs as high as  
13 Mbytes. In short, HybChirp shows the best performance 
in terms of overhead under CBR cross-traffic. 

4.2 Poisson cross-traffic 

This section studies the performance of three tools under 
Poisson cross-traffic. The rate of Poisson cross-traffic 
ranges from 40 Mbps to 60 Mbps with the average of  
50 Mbps and the packet size is fixed as 1,500 bytes. Then, 
the actual AB changes dynamically during a simulation, 
which are calculated as 100 – CT. 
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Figure 6 Comparison of HybChirp, PathChirp and Pathload 
under CBR cross-traffic, (a) the estimated values of 
bandwidth (b) the convergence time (c) the overhead 
(see online version for colours) 

 
(a) 

 
(b) 

 
(c) 

In Figure 7(a), the actual values of AB are shown as the 
blue curve. The red squares represent the estimated values 
of HybChirp, the green triangles represent the estimated 
values of PathChirp and the purple crosses represent the 
estimated bandwidth range of Pathload. It is obvious that 
HybChirp closely follows the rapid changes of actual AB. 
The big measurement error only occurs at few points, e.g., 

30 Mbps is estimated at 1.1 s while the actual value is  
48 Mbps. PathChirp displays less accurate than HybChirp. 
For example, the estimated values between 0.0 s–3.0 s of 
PathChirp have rather large deviations. Pathload only 
provides one estimated range of bandwidth without 
recording any change of AB. Moreover, Figure 7(b) and 
Figure 7(c) show that HybChirp costs less convergence time 
and overhead than other PathChirp and Pathload. 

Figure 7 Comparison of HybChirp, PathChirp and Pathload 
under Poisson cross-traffic, (a) the estimated values of 
bandwidth (b) the convergence time (c) the overhead 
(see online version for colours) 

 
(a) 

 
(b) 

 
(c) 
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Figure 8 σ (%) of HybChirp, PathChirp and Pathload under 
Poisson cross-traffic 

 

Shown in Figure 8, HybChirp has the lowest value of σ and 
does well in obtaining the real-time AB. Therefore, 
HybChirp and PathChirp can be used to estimate the AB 
online, and HybChirp has a higher precision and adaptivity. 

4.3 Pareto cross-traffic 

This section considers another type of cross-traffic: Pareto. 
The parameters of Pareto cross-traffic are as follows: burst 
time = 5 ms, idle time = 400 ms, packetSize = 1,500 bytes, 
average rate = 20 Mbps and shape = 1.1. The simulation 
results are shown in Figure 9 with the period of 10 seconds. 
The actual ABs on the vertical axis are calculated as the 
total capacity 100 Mpbs minus Pareto cross-traffic’s 
throughput CT. 

Figure 9(a) shows that HybChirp has best performance 
during the bust time or idle time of Pareto cross-traffic. In 
the beginning, HybChirp and PathChirp have lower 
estimated values of bandwidth than the actual value.  
At around 2.5 s, HybChirp shows higher accuracy in 
bandwidth estimation compared with PathChirp. HybChirp 
costs the least time in bandwidth estimation under Paroto 
cross-traffic, shown as Figure 9(b). Pathload costs much 
time in bandwidth estimation because it obtains the 
estimated range at 9.2 s. HybChirp may send more probing 
packets to ensure high accuracy than PathChirp. For 
example, in Figure 9(c), HybChirp shows a little higher 
overhead than PathChirp. 

Figure 10 shows that the value of σ in HybChirp is 
lowest. It means that HybChirp responds well to immediate 
changes in network environment. We shall note that 
Pathload only provides one range including two values of 
estimated bandwidth. Compared with dozens of real-time 
results estimated by HybChirp and PathChirp, Pathload 
exposes its disadvantages: long convergence time and 
ossified measurement. 

In summary, the abundant simulations indicate that 
HybChirp outperforms PathChirp and Pathload in terms of 
accuracy, convergence time, overhead and is adaptive under 
different cross-traffic. 

 

Figure 9 Comparison of HybChirp, PathChirp and Pathload 
under Pareto cross-traffic, (a) the estimated values of 
bandwidth (b) the convergence time (c) the overhead 
(see online version for colours) 
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(b) 

 
(c) 
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Figure 10 σ (%) of HybChirp, PathChirp and Pathload under 
Pareto cross-traffic 

 

5 Conclusions 

In this paper, we propose an efficient tool HybChirp to 
estimate the end-to-end AB. By inheriting the exp-chirps in 
PathChirp, HybChirp proposes lin-chirps to improve the 
accuracy of bandwidth estimation. HybChirp employs  
exp-chirps to locate a suitable range of the AB and uses  
lin-chirps to obtain a precise AB. Using the simulations in 
NS-2, we have shown that HybChirp can obtain more 
accurate estimated bandwidth quickly with lower overhead 
of probing packets, compared with PathChirp and Pathload. 
It is also shown that HybChirp is good at adaptivity. This is 
an advantage to estimate the AB in real-time which rapidly 
reflects the changes of network environment. 

In the near future, we will build a test bed to verify the 
efficiency of HybChirp. Moreover, we will apply Hybchirp 
into some internet applications and protocols that require 
accurate estimated bandwidth, and further evaluate its 
performance. 
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Notes 
1 The source code for HybChirp is available at 

https://github.com/TaoZheng/HybChirp.git. 
2 The source code for PathChirp is available at 

https://github.com/TaoZheng/pathchirp-for-NS2. 
3 The source code for Pathload is available at 

https://github.com/TaoZheng/Pathload-for-ns2. 


