
360 Int. J. Computational Science and Engineering, Vol. 12, No. 4, 2016

Copyright © The Author(s) 2016. Published by Inderscience Publishers Ltd. This is an Open Access Article distributed under
the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

End-to-end available bandwidth estimation using
HybChirp

Wenzhen Chi and Tao Zheng
School of Information Science and Engineering,
Xiamen University,
Xiamen, 361005, China
and
ShenZhen Research Institute of Xiamen University,
ShenZhen, 518000, China
Email: chiwenzhen@gmail.com
Email: izhengtao@126.com

Yi Xie*
School of Information Science and Engineering,
Xiamen University,
Xiamen, 361005, China
and
Fujian Key Laboratory of Sensing and Computing for Smart City,
Xiamen University,
Xiamen, 361005, China
Email: csyxie@xmu.edu.cn
*Corresponding author

Zhongwen Li
The Computer College,
Chengdu University,
Chengdu, 610106, China
Email: lizw@cdu.edu.cn

Yijiang Chen
School of Information Science and Engineering,
Xiamen University,
Xiamen, 361005, China
Email: cyj@xmu.edu.cn

Abstract: The available bandwidth is a crucial metric of networks performance which is applied
in congestion control, route selection, traffic analysis and QoS management. PathChirp is a
well-known tool to estimate available bandwidth based on an approach of self-induced
congestion, which exponentially increases the rate of probing packets in each packet train. But
the inappropriate gaps of probing rates often result in a large deviation of estimated available
bandwidth. In order to solve this problem, we propose HybChirp, an active probing tool which
uses linearly spaced probing packets (lin-chirps) and exponentially spaced probing packets
(exp-chirps) in combination. HybChirp improves PathChirp by adopting the hybrid of lin-chirps
and exp-chirps, while inherits the advantages of PathChirp such as the short convergence time
and low overhead. The NS-2 simulation results have shown that HybChirp outperforms
PathChirp and Pathload in terms of accuracy, overhead, convergence time and adaptivity.

Keywords: available bandwidth estimation; PathChirp; linear probing; exponential probing;
HybChirp.

Reference to this paper should be made as follows: Chi, W., Zheng, T., Xie, Y., Li, Z. and
Chen, Y. (2016) ‘End-to-end available bandwidth estimation using HybChirp’, Int. J.
Computational Science and Engineering, Vol. 12, No. 4, pp.360–369.

 End-to-end available bandwidth estimation using HybChirp 361

Biographical notes: Wenzhen Chi is a graduate student in Department of Computer Science,
Xiamen University, China. He received his Bachelor degree from Xiamen University in 2010.
His research fields are computer network, network modelling, simulation and analysis, and
natural language processing.

Tao Zheng is a graduate student in Department of Computer Science, Xiamen University, China.
He received his Bachelor degree from Hunan International Economics University in 2013. His
research interests include network security, computer application technology, network analysis
and performance evaluation.

Yi Xie is an Assistant Professor in Xiamen University, China. She received her BE and MS from
Xian Jiaotong University, China, as well as her PhD from the Hong Kong Polytechnic
University, Hong Kong SAR of China. Her current research interests include high performance
communication, network protocol analysis, network security and modelling and simulation. She
is a member of ACM and IEEE Computer Society.

Zhongwen Li is a Professor in Chengdu University, China. She received her MS and PhD from
College of Computer Science and Engineering of UESTC in 1998 and 2001, respectively. In
2001, she worked in College of Communication Technology of UESTC as a postdoctoral
research fellow. From 2003 to 2010, she worked in Department of Computer Science of Xiamen
University. Her research interests include network security and networked computing.

Yijiang Chen is an Associate Professor in Xiamen University, China. He received his PhD from
Xiamen University. His research mainly focuses on computer network, natural language
processing, artificial intelligence, and text information extraction.

1 Introduction

Available bandwidth (AB) is one significant metric to
evaluate the performance of network, which is the minimum
AB among all links on an end-to-end path. The estimated
AB plays an important role in network protocols of routing
selection, admission control, congestion control, and QoS
management (Kavitha and Sankaranarayanan, 2014).
Therefore, many researchers paid attention to design an
efficient and accurate tool to estimate the AB.

The tools of bandwidth estimation can be divided into
two categories: active probing and passive measurement.
Active probing tools mostly use packet trains for probing,
such as RTT (Imai et al., 2013), Pathload (Jain and
Dovrolis, 2002), PathChirp (Ribeiro et al., 2003), AProbing
(Xie et al., 2014) and trains of packet pairs (TOPP)
(Melander et al., 2000). A packet train is defined as a burst
of packets sent from the same source to the same destination
(Jain and Routhier, 1986). Passive measurement does
not require any dedicated probing packets, but collects
useful information by monitoring the packets in real
communication, for example, cPEAB (Tursunova et al.,
2010) and APBE (Park and Roh, 2010).

PathChirp is a well-known active probing tool for
estimating AB using self-induced congestion. Self-induced
congestion relies on an intuitive idea: if the probing bit-rate
exceeds the actual AB, then some probing packets will be
queued at a router and the transmission delay will be
increased. Otherwise, the packets will not suffer from
incremental queuing delay. PathChirp adopts an
exponentially spaced packet train (called as a chirp) for
probing, where the probing rates of chirps increase
exponentially. The inter-arrival time of the probing packets

decreases almost exponentially. Then the estimated
bandwidth is proportional to the reciprocal of that time.

PathChirp results in a large deviation of estimated
bandwidth because the probing bit-rate often changes
sharply. Consider a network path whose actual AB is A and
two probing packets are successively injected into this
network with the rates of M and N respectively, where
M ≤ A ≤ N. When the first packet arrives, its queuing delay
is almost zero since M ≤ A. When the second packet arrives,
the receiver will detect an increase of queuing delay. The
inter-arrival time is then used to estimate AB. The estimated
bandwidth is accurate when A approximates to N. But the
large deviation is introduced when A is closer to M.

This paper proposes HybChirp, an enhanced tool of
PathChirp, to improve the accuracy of bandwidth
estimation. HybChirp employs both linearly spaced packets
(called as lin-chirp) and exponentially spaced packets
(called as exp-chirp) for probing. Firstly, exp-chirps are
used to find a reasonable range of AB, which is the same as
PathChirp. Secondly, a fine tuning process using lin-chirps
is operated within this range. In a lin-chirp, the difference of
transmission rates between all successive packets are the
same which can be adjusted small enough to satisfy the
precision of bandwidth estimation. In this way, HybChirp
estimates AB efficiently and accurately.

We have evaluated HybChirp in NS-2 which is a
discrete event simulator in computer networks. The
simulation results have indicated that HybChirp achieve
better performance compared with PathChirp and Pathload
in terms of accuracy, overhead and convergence time.

The rest of this paper is organised as following. In
Section 2, we introduce the related work on AB estimation
and the basic technique of PathChirp. Section 3 illustrates
the design of HybChirp and Section 4 evaluates HybChirp

362 W. Chi et al.

by comparing it with PathChirp and Pathload. Finally, we
draw a conclusion in Section 5.

2 Related work

2.1 Existed methods of AB estimation

Active probing method launches end-to-end probing packets
into a network, and then estimates the AB by analysing the
records of probing packets and their responding packets
(Guerrero and Labrador, 2010). Active probing is flexible
and convenient, but its additional probing traffic may
influence the real traffic of network. Passive measurement
monitors the communication of packets in the
sender/receiver over a given period, and then calculates AB
by the traffic information. Obviously, passive measurement
has little effect on real network traffic, but requires
abundant packet samples. If the packet samples are not
enough, the accuracy of passive measurement will be
influenced. Our study focuses on the methods of active
probing.

In the early stage, AB is calculated by dividing the total
amount of probing packets by the transmission period. For
example, in Cprobe (Carter and Crovella, 1996), a dedicated
server sends a short stream of probing packets and the
receiver records the arrival time of the first packet and the
arrival time of the last packet. The AB equals to the total
length of all probing packets divided by the period between
two records of arrival time. Cprobe-like methods, such as
Pathchar (Downey, 2000) and Pipechar (Jin et al., 2001), are
simple but result in high cost due to abundant probing
packets.

Some researchers use probing packets in an efficient
way. The technique of packet pair/train dispersion (PPTD)
(Jacobson, 1998) based on a probe gap model is studied.
This technique relies on an assumption that the link with the
minimum AB must be the link with the minimum capacity
in an end-to-end path. PPTD estimates AB by analysing the
time gaps between successive probing packets at the
receiver, such as IGI (Hu and Steenkiste, 2006). TOPP is an
extension to the PPTD technique, which gets rid of the
unrealistic assumption by detecting the bottleneck link first.
A comparatively new technique uses well-separated probing
packet pairs with different spacing. It estimates AB from the
time-averaged spacing of packets at the receiver, for
example, Nettimer (Lai and Baker, 2001) and Pathrate
(Dovrolis et al., 2001). However, the accuracy of estimated
bandwidth is sensitive to the selection of spacing between
packet pairs. And all routers involved in the end-to-end path
are assumed to employ FIFO queuing rule, which is not
applicable in most networks.

The newly methods of self-loading periodic streams
(SLoPS) are based on the observation of the queuing delay
of successive periodic probing packets. The delay increases
when the rate of probing packets is higher than the AB on
an end-to-end path. That is, the queuing delay of a packet
stream shows an increasing trend when the rate of probing

packet is higher than the AB. The widely known
implementations of SLoPS are Pathload and PathChirp.

Pathload is an iterative algorithm which uses multiple
constant bit-rate streams for producing a single estimation.
The basic idea of Pathload is that the one-way delay of a
periodic packet stream shows the increasing trend when the
stream rate (SR) is larger than the AB. Denote ai as the
arrival time of the ith packet and ti is the timestamp of
transmission. The relative one-way delay of each packet is
calculated as Di = ai – ti. When SR > AB, the stream creates
a short-term overload in a bottleneck link. The queueing
delay of packet i at the bottleneck link is expected to
increase. Pathload firstly transmits constant bit-rate streams
with a low SR and then increases the SR step by step, while
the trend of packet delay Di is closely monitored. When
SR > AB, the relative one-way delay {D1, D2, …, Dk} of the
stream packets are expected to have an increasing trend and
then the current SR is considered to be AB, shown in
Figure 1 (Jain and Dovrolis, 2002).

Compared with Pathload, PathChirp decreases the
number of probing packets while obtaining an acceptable
result of estimated bandwidth. The design of PathChirp is
introduced in detail in Subsection 2.2. This paper proposes a
new method HybChirp to improve the accuracy of
PathChirp.

Figure 1 One-way delay variations when SR > AB

2.2 Introduction of PathChirp

In PathChirp, many chirps of probing packets are sent from
a sender to a receiver. A chirp consists of N exponentially
spaced packets, and all packets have the same size of P
bytes. The sender transmits the kth packet at the time tk,
k = 1, …, N. And the transmission rate of the kth packet is
shown in equation (1), where the interspacing time
δk = tk+1 – tk, k = 1, …, N – 1.

/ .k kR P δ= (1)

A statistical analysis of arrival packets is conducted to
estimate AB at the receiver. Figure 2 (Ribeiro et al., 2003)
presents the queuing delay situation of N packets in a chirp,
where one dot represents a packet. The vertical axis presents
the queuing delay of packets and the horizontal axis

 End-to-end available bandwidth estimation using HybChirp 363

presents the time when the packets are transmitted. The
queuing delay for the kth packet is denoted as qk. An
excursion starts with the ith packet if qi ≤ qi–1 and qi < qi+1,
and stops with the jth packet if qj = 0 or equation (2) is
satisfied, in this case qj decreases by a factor F from the
maximum queuing delay experienced during this interval.
For example, the first excursion is from the third packet to
the seventh packet. Additionally, the length of an excursion
shall be longer than a threshold L. If Rk is less than the
actual AB, the first few excursions produced by bursts will
return to zero (we call them closed excursions). Otherwise,
the excursion ends with increasing queuing delay, like the
second excursion in Figure 2. Suppose the starting point of
the last excursion is packet θ with the rate of Rθ. Note that
the last excursion is not closed.

[]max
.i k j k i

j i
q q

q q
F

≤ ≤ −
− = (2)

For a chirp of N packets, the bandwidth calculated by each
packet is denoted as Ek, shown as equation (3). Then the
estimated AB calculated by the chirp is denoted as ˆ,A
shown in equation (4).

1, and
, else.

k k k
k

θ

R k θ q q
E

R
+< ≤⎧

= ⎨
⎩

 (3)

1

1
1

1

ˆ .

N
k kk

N
kk

E δ
A

δ

−

=
−

=

=
∑
∑

 (4)

If the transmission rate of probing packets changes
within the range of [G1, G2] Mbps, Pathchirp will use
approximately log(G1) – log(G2) packets for probing. That
is, PathChirp estimates AB with high speed and low cost,
because probing packets are exponentially spaced. But this
feature also introduces a big deviation in bandwidth
estimation. In order to improve the accuracy of PathChirp,
we propose HybChirp which adopts linearly spaced packets
(lin-chirp) and exponentially spaced packets (exp-chirp)
together.

Figure 2 A typical situation of chirp’s queuing delay

3 Design of HybChirp

In this paper, HybChirp is designed to estimate the AB on
the path between node SND and node RCV, shown in
Figure 3. Firstly, SND transmits a packet chirp to RCV with
an initial rate. RCV receives the chirp and replies a value of
estimated bandwidth. Secondly, SND sends a new chirp
with the updated rate according to the probing strategy of
chirps, in which lin-chirp and exp-chirp are selected
according the feedback from RCV. Therefore, RCV keeps
recording the delay of probing packets and calculates the
current AB for each chirp, ˆ.A The algorithm of bandwidth
estimation is designed according to different probing
strategies of chirps. The AB is finally calculated by the
cooperation of SND and RCV.

Figure 3 Network topology

Next, the probing strategy of chirps at SND and the new
algorithm of bandwidth estimation are described in detail.
The parameters and notations of PathChirp are inherited.

3.1 Probing strategy

According to the experiments of PathChirp, exp-chirps can
speed up the search of AB. HybChirp inherits its advantage,
which firstly sends the exp-chirps of probing packets to
locate a potential range of AB. Secondly, the lin-chirps of
probing packets are used to obtain a more precise estimated
value within this range. Therefore, the probing strategy of
HybChirp uses exp-chirps and lin-chirps interchangeably.
Figure 4 presents the probing strategy of HybChirp in SND,
which includes three parts: the initial part on the top, the
exp-chirp part on the left and the lin-chirp part on the right.

The initial part is similar with PathChirp. SND transmits
an exp-chirp with a rate within [Rl, Rh], where Rl is the
lower limit of probing rates and Rh is the upper limit. The
actual AB shall be within this range. The rates of probing
packets in one exp-chirp grows in a geometric progression,
Rl, γRl, γ2Rl, …, γN–1Rl, where γ is a spread factor. RCV
calculates the estimated bandwidth of Â using the
algorithm in Subsection 3.2, and then replies Â to SND.

After sending one chirp, SND waits for the estimated
value Â from RCV and accordingly adjusts the values of Rl
and Rh for sending the next exp-chirp. When ˆ ,lA R≤α Â
approaches Rl and the rates of probing packets are too high.
Then Rh will be reset as Rl ∗ m and Rl will be decreased by
dividing m. When ˆ ,hA R≥ β Â approaches Rh. Then Rl will
be reset as Rh / m and Rh will be increased by multiplying m.
Here, α, β and m are tuning parameters, 0 < β < 1 < α and

364 W. Chi et al.

m = 4 typically. Otherwise, the counter expcnt increases by 1.
The algorithm reaches a stable state when Rl and Rh remain
unchanged continuously for c1 times. That is, the AB shall
be within a good range of * *[,],l hR R where * ˆ

hR A= and
* ˆ / .lR A γ=

Next, SND adopts the lin-chirps of probing packets to
refine the estimated AB within * *[,].l hR R In a lin-chirp, the
rates of probing packets increases step by step, i.e.,

* * * *, + , 2 , ..., ,l l l hR R R RΔ + Δ where the step Δ is a function
of Â as shown in equation (5). Intuitively, lin-chirps
change the rates of probing packets slower than exp-chirps,
which increase the accuracy of bandwidth estimation. If

ˆ ,l hR n A R n+ Δ ≤ ≤ − Δ SND will send the next lin-chirp
and increase the counter lincnt by 1, where n is a tuning
factor. Otherwise, SND will adjust Rl and Rh according to
Figure 4 and switch to use exp-chirps. If Â < Rl + nΔ, Rl
and Rh will be decreased. If Â > Rh – nΔ, Rl and Rh will be
increased. And the retry of exp-chirps can find a better
range of estimated bandwidth. Finally, the probing of SND
terminates when lincnt = c2. The final estimated bandwidth
can be simply the latest value of Â in lin-chirps.

ˆ0.1 Mbps, 0 1 Mbps
ˆ0.5 Mbps, 1 Mbps 10 Mbps

ˆ1 Mbps, 10 Mbps 300 Mbps
ˆ10 Mbps, 300 Mbps 1 Gbps

ˆ50 Mbps, 1 Gbps

A

A

A

A

A

⎧ ≤ <
⎪

≤ <⎪
⎪Δ = ≤ <⎨
⎪

≤ <⎪
⎪ ≤⎩

 (5)

Therefore, exp-chirps and lin-chirps are combined to obtain
the AB on an end-to-end path.

3.2 Algorithm in RCV

In Pathchirp, all excursions are used to calculate ˆ.A But the
probing packets in closed excursions provide few
information because their rates do not exceed the actual AB.
Therefore, HybChirp only focus on the last excursion of
each chirp and the estimated bandwidth is calculated by
formula (6) in SND, where the starting point of the last
excursion is packet θ with the probing rate of Rθ. When
RCV receives an exp-chirp, the last Rθ is simply taken as ˆ.A
When RCV receives a lin-chirp, we take the average
(Rθ + Rθ–1) / 2 as ˆ.A

()1

, in a exp-chirpˆ
/ 2, in a lin-chirp

θ

θ θ

R
A

R R −

⎧
= ⎨ +⎩

 (6)

Figure 4 Flow chart of HybChirp’s probing strat (see online version for colours)

 End-to-end available bandwidth estimation using HybChirp 365

4 Evaluation in NS-2

HybChirp is evaluated by the NS-2 (version 2.27) simulator
in a simple network topology which is also used in related
works (Angrisani et al., 2006; Ali et al., 2006), shown in
Figure 5. The link between routers R1 and R2 has the
capacity of C (Mbps), where C = 100. Therefore, HybChirp
is carried out at SND and RCV and the end-to-end path is
SND-R1-R2-RCV. Other two hosts, the cross-traffic sender
and the cross-traffic receiver, control the cross-traffic with
the throughput of CT (Mbps), then the actual end-to-end AB
is A = C – CT. Here, three types of cross traffic are
considered: constant bit rate (CBR), Poisson and Pareto.

Figure 5 The network topology in NS-2 (see online version
for colours)

We also compare HybChirp1 with two well-known tools of
bandwidth estimation: PathChirp2 and Pathload3. PathChirp
uses its default configurations (Ribeiro et al., 2003), i.e.,
γ = 1.2, P = 1,000 bytes. Pathload sets the bandwidth
resolution as 10 Mbps, and other parameters are the same as
the paper (Jain and Dovrolis, 2002). HybChirp inherits
PathChirp’s parameters and its probing parameters are set as
follows: α = 1.33, β = 0.75, m = 4, n = 3, c1 = c2 = 3. These
three tools are compared in terms of accuracy, convergence
time, overhead and adaptivity (as applicable). This paper
improves the precision of performance metrics by averaging
the results of ten times repeated simulations.

• Error metric of ε presents the measurement error of
estimated bandwidth, where A is the actual AB and Â
is the estimated bandwidth. If the result of bandwidth
estimated tool is a range of * *[,],l hR R we will simply it

by * *ˆ () / 2.l hA R R= + The lower ,ε the more accurate
result.

ˆ
.A A

A
−

=ε (7)

• Convergence time is the total period cost in a complete
estimation of bandwidth. Less convergence time means
a higher speed in bandwidth estimation.

• Overhead is the total amount of probing packets
used in a complete estimation of bandwidth. Reducing
overhead can decrease the impact of probing on the
network.

• Adaptivity, presents the real-time performance of a
bandwidth estimation tool. A standard deviation σ is
defined to reflect the differences between the estimated
values and the actual values during a simulation period,
where K estimated values are considered. A low value
of σ means that the bandwidth estimation tool well
follows the trend of actual AB.

2

1

ˆ1 .
K

i i

ii

A Aσ
K A=

⎛ ⎞−
⎜ ⎟
⎝ ⎠

∑ (8)

4.1 CBR cross-traffic

Firstly, HybChirp, PathChirp and Pathload are compared in
the presence of CBR cross-traffic with different rates of 10,
30, 50, 70 and 90 Mbps.

HybChirp outperforms PathChirp and Pathload in terms
of accuracy because its measurement errors are lowest
under all cases of CBR cross-traffic, shown in Table 1.
For example, in Figure 6(a), when CT = 70 Mpbs and
A = 30 Mpbs (shown in the solid line), the estimated
bandwidth of HybChirp is 28.6 Mbps, while the estimated
bandwidth of PathChirp is 25.7 Mbps and the range of
estimated bandwidth of Pathload is [20, 42] Mbps.

Table 1 ε of three tools under CBR cross-traffic

CT (Mbps) 10 30 50 70 90

HybChirp 8.0% 4.6% 5.1% 2.5% 5.3%
PathChirp 20.5% 14.1% 15.7% 8.7% 10.9%
Pathload 63.1% 3.3% 6.0% 1.4% 4.4%

Figure 6(b) compares the convergence time of three tools.
The average of convergence time in HybChirp is shortest,
around 1 second. PathChirp uses a little longer time,
3 seconds in average. However, Pathload costs about
20 seconds to finish one simulation. Apparently, HybChirp
speeds up the bandwidth estimation since that exp-chirps
and lin-chirps are combined efficiently.

Figure 6(c) compares the overhead of three tools used in
one simulation. It is clear that the amount of traffic injected
by Pathload is much more than HybChirp and PathChirp.
For example, when CT = 10 Mpbs and A = 90 Mpbs,
HybChirp costs probing packets of 0.26 M bytes, PathChirp
costs almost double, while Pathload costs as high as
13 Mbytes. In short, HybChirp shows the best performance
in terms of overhead under CBR cross-traffic.

4.2 Poisson cross-traffic

This section studies the performance of three tools under
Poisson cross-traffic. The rate of Poisson cross-traffic
ranges from 40 Mbps to 60 Mbps with the average of
50 Mbps and the packet size is fixed as 1,500 bytes. Then,
the actual AB changes dynamically during a simulation,
which are calculated as 100 – CT.

366 W. Chi et al.

Figure 6 Comparison of HybChirp, PathChirp and Pathload
under CBR cross-traffic, (a) the estimated values of
bandwidth (b) the convergence time (c) the overhead
(see online version for colours)

(a)

(b)

(c)

In Figure 7(a), the actual values of AB are shown as the
blue curve. The red squares represent the estimated values
of HybChirp, the green triangles represent the estimated
values of PathChirp and the purple crosses represent the
estimated bandwidth range of Pathload. It is obvious that
HybChirp closely follows the rapid changes of actual AB.
The big measurement error only occurs at few points, e.g.,

30 Mbps is estimated at 1.1 s while the actual value is
48 Mbps. PathChirp displays less accurate than HybChirp.
For example, the estimated values between 0.0 s–3.0 s of
PathChirp have rather large deviations. Pathload only
provides one estimated range of bandwidth without
recording any change of AB. Moreover, Figure 7(b) and
Figure 7(c) show that HybChirp costs less convergence time
and overhead than other PathChirp and Pathload.

Figure 7 Comparison of HybChirp, PathChirp and Pathload
under Poisson cross-traffic, (a) the estimated values of
bandwidth (b) the convergence time (c) the overhead
(see online version for colours)

(a)

(b)

(c)

 End-to-end available bandwidth estimation using HybChirp 367

Figure 8 σ (%) of HybChirp, PathChirp and Pathload under
Poisson cross-traffic

Shown in Figure 8, HybChirp has the lowest value of σ and
does well in obtaining the real-time AB. Therefore,
HybChirp and PathChirp can be used to estimate the AB
online, and HybChirp has a higher precision and adaptivity.

4.3 Pareto cross-traffic

This section considers another type of cross-traffic: Pareto.
The parameters of Pareto cross-traffic are as follows: burst
time = 5 ms, idle time = 400 ms, packetSize = 1,500 bytes,
average rate = 20 Mbps and shape = 1.1. The simulation
results are shown in Figure 9 with the period of 10 seconds.
The actual ABs on the vertical axis are calculated as the
total capacity 100 Mpbs minus Pareto cross-traffic’s
throughput CT.

Figure 9(a) shows that HybChirp has best performance
during the bust time or idle time of Pareto cross-traffic. In
the beginning, HybChirp and PathChirp have lower
estimated values of bandwidth than the actual value.
At around 2.5 s, HybChirp shows higher accuracy in
bandwidth estimation compared with PathChirp. HybChirp
costs the least time in bandwidth estimation under Paroto
cross-traffic, shown as Figure 9(b). Pathload costs much
time in bandwidth estimation because it obtains the
estimated range at 9.2 s. HybChirp may send more probing
packets to ensure high accuracy than PathChirp. For
example, in Figure 9(c), HybChirp shows a little higher
overhead than PathChirp.

Figure 10 shows that the value of σ in HybChirp is
lowest. It means that HybChirp responds well to immediate
changes in network environment. We shall note that
Pathload only provides one range including two values of
estimated bandwidth. Compared with dozens of real-time
results estimated by HybChirp and PathChirp, Pathload
exposes its disadvantages: long convergence time and
ossified measurement.

In summary, the abundant simulations indicate that
HybChirp outperforms PathChirp and Pathload in terms of
accuracy, convergence time, overhead and is adaptive under
different cross-traffic.

Figure 9 Comparison of HybChirp, PathChirp and Pathload
under Pareto cross-traffic, (a) the estimated values of
bandwidth (b) the convergence time (c) the overhead
(see online version for colours)

(a)

(b)

(c)

368 W. Chi et al.

Figure 10 σ (%) of HybChirp, PathChirp and Pathload under
Pareto cross-traffic

5 Conclusions

In this paper, we propose an efficient tool HybChirp to
estimate the end-to-end AB. By inheriting the exp-chirps in
PathChirp, HybChirp proposes lin-chirps to improve the
accuracy of bandwidth estimation. HybChirp employs
exp-chirps to locate a suitable range of the AB and uses
lin-chirps to obtain a precise AB. Using the simulations in
NS-2, we have shown that HybChirp can obtain more
accurate estimated bandwidth quickly with lower overhead
of probing packets, compared with PathChirp and Pathload.
It is also shown that HybChirp is good at adaptivity. This is
an advantage to estimate the AB in real-time which rapidly
reflects the changes of network environment.

In the near future, we will build a test bed to verify the
efficiency of HybChirp. Moreover, we will apply Hybchirp
into some internet applications and protocols that require
accurate estimated bandwidth, and further evaluate its
performance.

Acknowledgements

We acknowledge the support from Natural Science
Foundation of Fujian Province of China (No. 2013J05101),
Shenzhen City Special Fund for Strategic Emerging
Industries (No. JCYJ20120830153030584), National
Natural Science Foundation of China (No. 61379157),
National Special Fund for Major Research Equipment and
Instruments of China (No. 2011YQ03012417), the
Scientific Research Fund of SiChuan Provincial Science and
Technology Department (Nos. 2015GZ0333, 2014SZ0107),
and Research Fund of Fujian Key Laboratory of Sensing
and Computing for Smart City.

References
Ali, A.A., Michaut, F. and Lepage, F. (2006) ‘End-to-end available

bandwidth measurement tools: a comparative evaluation of
performances’, Proceedings of the 4th International
Workshop on Internet Performance, Simulation, Monitoring
and Measurements IPS-MoMe 2006, pp.1–14.

Angrisani, L., Dõantonio, S., Esposito, M. and Vardusi, M. (2006)
‘Techniques for available bandwidth measurement in IP
networks: a performance comparison’, Computer Networks,
Vol. 50, No. 3, pp.332–349.

Carter, R.L. and Crovella, M.E. (1996) ‘Measuring bottleneck link
speed in packet-switched networks’, Performance Evaluation,
Vols. 27–28, No. 4, pp.297–318.

Dovrolis, C., Ramanathan, P. and Moore, D. (2001) ‘What do
packet dispersion techniques measure?’, Twentieth Annual
Joint Conference of the IEEE Computer and Communications
Societies, Anchorage, AK, pp.905–914.

Downey, A.B. (2000) ‘Using pathchar to estimate internet link
characteristics?’, ACM SIGCOMM Computer Communication
Review, Vol. 29, No. 4, pp.241–250.

Guerrero, C.D. and Labrador, M.A. (2010) ‘On the applicability of
available bandwidth estimation techniques and tools’,
Computer Communications, Vol. 33, No. 1, pp.11–22.

Hu, N. and Steenkiste, P. (2006) ‘Evaluation and characterization
of available bandwidth probing techniques’, IEEE Journal
on Selected Areas in Communications, Vol. 21, No. 6,
pp.879–894.

Imai, M., Sugizaki, Y. and Asatani, K. (2013) ‘A new estimation
method using RTT for available bandwidth of a bottleneck
link’, International Conference on Information Networking,
Bangkok, pp.529–534.

Jacobson, V. (1998) ‘Congestion avoidance and control’, ACM
SIGCOMM Computer Communication Review, Vol. 18,
No. 4, pp.314–329.

Jain, M. and Dovrolis, C. (2002) ‘Pathload: a measurement tool for
end-to-end available bandwidth’, Proceedings of Passive and
Active Measurements (PAM) Workshop, pp.14–25.

Jain, R. and Routhier, S. (1986) ‘Packet trains – measurements and
a new model for computer network traffic’, IEEE Journal
on Selected Areas in Communications, Vol. 4, No. 6,
pp.986–995.

Jin, G., Yang, G., Crowley, B. and Agarwal, D. (2001) ‘Network
characterization service (NCS)’, Proceedings of the 10th
IEEE Symposium on High Performance Distributed
Computing, San Francisco, CA, pp.289–299.

Kavitha, G. and Sankaranarayanan, V. (2014) ‘A novel resource
selection framework to improve QoS in computational grid’,
International Journal of Computational Science and
Engineering, Vol. 9, No. 1, pp.130–138.

Lai, K. and Baker, M. (2001) ‘Nettimer: a tool for measuring
bottleneck link bandwidth’, Proceedings of the USENIX
Symposium on Internet Technologies and Systems, p.11.

Melander, B., Bjorkman, M. and Gunningberg, P. (2000) ‘A new
end-to-end probing and analysis method for estimating
band width bottlenecks’, IEEE Global Communications
Conference, San Francisco, CA, pp.415–420.

 End-to-end available bandwidth estimation using HybChirp 369

Park, H.Y. and Roh, B-H. (2010) ‘Accurate passive bandwidth
estimation (APBE) in IEEE 802.11 wireless LANs’,
International Conference on Ubiquitous Information
Technologies and Applications (CUTE), Sanya, pp.1–4.

Ribeiro, V.J., Riedi, R.H., Baraniuk, R.G., Navrati, J. and
Cottrell, L. (2003) ‘PathChirp: efficient available bandwidth
estimation for network paths’, Proceedings of the Passive and
Active Measurement Workshop, San Diego, CA

Tursunova, S., Inoyatov, K. and Kim, Y.T. (2010) ‘Cognitive
passive estimation of available bandwidth (cPEAB) in
overlapped IEEE 802.11 WiFi WLANs’, Proceedings of
Network Operations and Management Symposium (NOMS),
Osaka, pp.448–454.

Xie, Y., Zheng, T., Wang, Y.X. and Yuan, P.F. (2014) ‘AProbing:
estimating available bandwidth using ACK pair probing’,
International Conference on Smart Computing Workshops,
pp.43–49.

Notes
1 The source code for HybChirp is available at

https://github.com/TaoZheng/HybChirp.git.
2 The source code for PathChirp is available at

https://github.com/TaoZheng/pathchirp-for-NS2.
3 The source code for Pathload is available at

https://github.com/TaoZheng/Pathload-for-ns2.

