Computational model for the steady-state elasto-hydrodynamic interaction in wafer slicing process using wiresaw
by Liqun Zhu, Imin Kao
International Journal of Manufacturing Technology and Management (IJMTM), Vol. 7, No. 5/6, 2005

Abstract: A computational model for analysing the steady state elasto hydrodynamic (EHD) interaction in the wiresaw slicing process is presented in this paper. In this model, the coupling of the steady state motion of the translating wire and the hydrodynamic behaviour of the abrasive carrying slurry is studied. A numerical scheme incorporating the finite element method (FEM) and Inexact Newton-GMRES method is employed to solve the governing equations. By applying this method, better computational efficiency can be achieved than by using the typical Newton-Raphson method. Therefore, extensive parametric studies are made possible. Results from the parametric studies indicate that the noncontact floating machining mechanism dominates the wafer slicing process using the wiresaw. Direct contact machining, however, also may occur when the contact span between the wire and the ingot is short, coupled with the lack of slurry. Simulation results also show that too large a bow angle of the wire may cause the breakdown of proper EHD condition, resulting in the ductile ploughing of abrasive particles on the ingot surface. This computational model can provide insights into the mechanism of the wiresaw slicing process, and suggest process control methods to facilitate industrial wafer slicing process using slurry wiresaws.

Online publication date: Fri, 02-Sep-2005

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Manufacturing Technology and Management (IJMTM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com