Adaptive domain-decomposition methods for two-dimensional, time-dependent reaction-diffusion equations in nongraded meshes
by E. Soler, J.I. Ramos
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 5, No. 8, 2005

Abstract: An adaptive static grid refinement procedure in the propagation direction and several overlapping domain decomposition techniques based on symmetric and nonsymmetric Dirichlet and Dirichlet-Neumann cycles and a nonsymmetric Neumann cycle are used to study the propagation of reacting waves in two-dimensional rectangular regions of long-aspect ratio by means of finite difference methods in nonquasi-uniform, i.e., nongraded, meshes, and it is shown that both the accuracy and the convergence of overlapping techniques depend on, but are not monotonic functions of the number of overlapping grid lines or the overlapping distance.

Online publication date: Thu, 01-Sep-2005

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com