An octree-based solution-adaptive Cartesian grid generator and Euler solver for the simulation of three-dimensional inviscid compressible flows
by Emre Kara; A. İhsan Kutlar; M. Halûk Aksel
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 16, No. 3, 2016

Abstract: Cartesian grid generation methods are especially designed algorithms to generate automatic grids for complex geometries and to simulate flows around such geometries regardless of the body shape. Cartesian grids are generated by constructing an octree-based data structure for the purpose of connecting the Cartesian cells to each other. Entire algorithm is implemented in object-oriented FORTRAN programming language. Some special Cartesian algorithms, namely, Ray-Casting method and cut-cell adaptation are used around three-dimensional closed bodies. The flow field around the solid body is obtained by employing Euler equations which are discretised by using finite volume method. Validation of the numerical results is accomplished by comparison with the experimentally obtained data from the flow around ONERA M6 wing. Employing the solution adaptation techniques, pressure coefficients and contours of the flow around the wing have verified and captured two shock waves (weak leading edge shock and midchord shock) by the developed grid-generator-with-eULER-solver-for-3D-applications (GeULER3D) code.

Online publication date: Sat, 30-Apr-2016

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com