Experimental investigation of the tool wear in micro-milling of stainless steel 316
by Xinyu Liu; Shreyas Shashidhara
International Journal of Mechatronics and Manufacturing Systems (IJMMS), Vol. 9, No. 2, 2016

Abstract: The objective of this paper is to experimentally investigate the micro-machinability of stainless steel 316 under both dry and minimum quantity lubrication conditions. The machinability was assessed in terms of tool wear, tool life, cutting forces and surface finish. The tool life was characterised as the amount of material removed, instead of the conventional cutting times. The machining performance under MQL is superior to the dry machining for both process conditions in terms of the tool life. The magnitude of the machining forces showed cyclic pattern for both MQL and dry machining. The SEM images and the cutting force signals suggested that the dominant mode of the tool wear in micro-milling is edge chipping and abrasive wear at the tool tip. The surface roughness at the bottom of the slots improved significantly with the application of MQL for all levels of the tool wear.

Online publication date: Wed, 27-Apr-2016

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Mechatronics and Manufacturing Systems (IJMMS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com