Phosphate removal from wastewater using aluminium oxide as adsorbent
by Weimin Xie, Qunhui Wang, Hongzhi Ma, Hiroaki Ogawa
International Journal of Environment and Pollution (IJEP), Vol. 23, No. 4, 2005

Abstract: The development and manufacture of an adsorbent to remove phosphate for the prevention of eutrophication in lakes is very important. The use of aluminium oxide (alumina) as an organic adsorbent to remove phosphate from wastewater has been investigated. The characteristics of this absorption process were investigated to determine the important parameters, such as the pH and the aluminium ion concentration. Moreover, chemical treatment methods to enhance the adsorption capacity of alumina were tested. Dynamic studies and equilibrium adsorption isotherm studies were conducted to determine the adsorption capacity and efficiency. The experimental results indicate that it is necessary to increase the temperature above 500°C in order to obtain a high-capacity adsorbent, and alumina treated with acid or calcium or magnesium has a larger adsorption capacity for phosphate than untreated adsorbent. Moreover, the adsorption of phosphate was enhanced at a lower pH and a higher aluminium ion concentration, and a simple Freundlich isotherm could express the equilibrium adsorption isotherm, and the intragranular diffusion controlling model was used to test the dynamic studies. These findings have important implications for the application and development of aluminium oxide as a prospective adsorbent.

Online publication date: Fri, 19-Aug-2005

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Environment and Pollution (IJEP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com