Influence of aeroelastic flow induced oscillations on fatigue life of an airplane wing structure
by J. Bruce Ralphin Rose; G.R. Jinu
International Journal of Modelling, Identification and Control (IJMIC), Vol. 25, No. 3, 2016

Abstract: In the field of aeroelasticity, the phenomenon of dynamic vibrations and its prevention is a primary challenge that is imposed on an airplane designer. The fully coupled/partly coupled fluid-structure interaction (FSI) analysis is one of the widely used techniques implemented by design industries to assess the characteristics of limit cycle oscillations (LCO). It requires detailed computational modelling capabilities including a high speed wind tunnel testing environment. Hence, the partly coupled (or) moderate loosely coupled (MLC) FSI techniques are preferred to approximate the real phenomenon better than the quasi-steady models. The turbulence characteristics of a viscous flow field are computed efficiently by a reduced-order modelling approach that offers tractable solutions. This novel approach is used to determine the consequences of LCO on the fatigue life of an airplane wing structure. Further, the numerical fatigue simulations are used to demonstrate the effectiveness of MLC algorithm against experimental techniques.

Online publication date: Wed, 06-Apr-2016

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Modelling, Identification and Control (IJMIC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com