Modelling and optimisation of the post-weld heat treatment of γ′ precipitation and hardness on Inconel X-750 using the response surface methodology
by Prachya Peasura; Bovornchok Poopat
International Journal of Materials and Product Technology (IJMPT), Vol. 52, No. 3/4, 2016

Abstract: This work describes a post-weld heat treatment (PWHT) for Inconel X-750. The following PWHT variables were examined: the solution temperature, PWHT temperature, and PWHT time. In this research, the application of the response surface methodology and Box-Behnken design in a mathematical model was investigated and optimised. The resulting materials were examined using optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM) in the fusion zone (FZ). The experimental results reveal that using a full quadratic model with the proposed mathematical model of the γ′ precipitation size and γ′ hardness in the FZ, the obtained correlation of the hardness and γ′ precipitate size showed a reasonable linear relationship.

Online publication date: Sun, 27-Mar-2016

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Materials and Product Technology (IJMPT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com