Thermal-hydraulic studies of a transmutation advanced device for sustainable energy applications
by Leorlen Yunier Rojas; Laura García; Carlos Rafael García; Facundo Alberto Escrivá; Carlos Alberto Brayner
International Journal of Nuclear Energy Science and Technology (IJNEST), Vol. 9, No. 4, 2015

Abstract: The Transmutation Advanced Device for Sustainable Energy Applications (TADSEA) is a pebble-bed Accelerator Driven System (ADS) with a graphite-gas configuration, designed for nuclear waste transmutation and obtaining heat at very high temperatures to produce hydrogen. In previous thermal-hydraulic studies of the TADSEA using a Computational Fluid Dynamics (CFD) code, the pebble-bed reactor core was considered as a porous medium. In this paper, the heat transfer from the fuel elements to the coolant was analysed for three core states during normal operation. The heat transfer inside the spherical fuel elements was also studied. Three critical fuel elements groups were defined regarding their position inside the core. Results were compared with a realistic CFD model of the critical fuel elements groups. During the steady state, no critical elements reached the limit temperature of this type of fuel. Two transients were also studied with reduced coolant mass flow and loss of forced reactor cooling without shutdown.

Online publication date: Thu, 24-Mar-2016

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nuclear Energy Science and Technology (IJNEST):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com