Limitation of the 2D parallel flow assumption in thermosolutal convection: 2D-3D transition
by K. Choukairy; C. De Sa; R. Bennacer
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 16, No. 2, 2016

Abstract: In this study, we investigated numerically two- and three-dimensional convective heat and mass transfer in a horizontal rectangular enclosure filled with heterogeneous porous media. The main goal is to underline the limitation of the widely used classical parallel flow assumption. The considered configuration is Cartesian. The horizontal and vertical walls are submitted to different mass and heat transfer. The Darcy model and the Boussinesq approximation are considered. The governing parameters which control the problem are the Darcy-Rayleigh number, Rt, the buoyancy ratio, N, the enclosure aspect ratio, A, the local permeability ratio, Kr and the Lewis number (fixed to ten in the present study). The obtained results with two-dimensional (2D) and three-dimensional (3D) approaches are compared to underline similarities and differences. We demonstrate the limit validity of 2D solution and the transition to 3D solutions when the convective forces or the domain permeable heterogeneity increases. The flow intensity, heat and mass transfer increases with the domain permeable heterogeneity.

Online publication date: Sat, 05-Mar-2016

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com