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Abstract: Smart, sustainable and energy-efficient buildings have recently 
become a trend for intelligent and green building industry. One of the 
challenges for such a building is to minimise power consumption without 
compromising the occupant comfort. It is possible to sustain high comfort level 
with minimal energy consumption through intelligent multi-agent control and 
optimisation. Our work focuses on a new algorithmic aspect that makes 
buildings more intelligent, resource efficient and comfortable for occupants. A 
multi-agent control system with intelligent optimisation is proposed to  
optimise heating, ventilation and air-conditioning (HVAC) processes using 
computational intelligence approaches. The optimum solutions generated 
through the optimisation engine and task scheduling for each agent will be used 
to sustain a high level of occupant comfort with minimal power consumption, 
increase energy utilisation efficiency, and consequently reduce energy cost. 
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Experimental results and comparisons with other evolutionary approaches 
demonstrate the overall performance and potential benefits of the new 
framework. 

Keywords: multi-agent control; optimisation; computational intelligence. 
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1 Introduction 

Strategies towards sustainable performance with occupants have become increasingly 
important. Optimal indoor conditions help to enhance occupant health, productivity and 
experience. There have been multiple goals and provisions for the improvement of 
occupant comfort and energy savings (Dounis and Caraiscos, 2009; Fong et al., 2009; 
Kolokotsa et al., 2002). The improvement of the indoor environment comfort demands 
more energy consumption and the building operations require high energy efficiency to 
reduce energy consumption. Thus, one of the most important issues on energy-efficient 
buildings is to optimise the requirements of the occupants’ comfort and power 
consumption effectively. 

A multi-objective genetic algorithm (MOGA) is employed in Pervez et al. (2013) to 
study the behavioural model relationship between energy consumption and thermal 
comfort. Multi-island generic algorithm (MIGA) and generic algorithm (GA) is utilised 
in Ali and Kim (2013) to build the model for balancing the energy consumption and 
occupant comfort level. An overview of population-based optimisation techniques and 
the methodologies used for multiple objective problems is discussed in Giagkiozis et al. 
(2013). It is possible to sustain high comfort level with minimal energy consumption 
through intelligent control of building energy management systems. Intelligent control of 
the thermal comfort, visual comfort and air quality comfort are vital for both energy 
efficiency and occupant’s quality of living (Dounis and Caraiscos, 2009). These three 
basic factors determine the occupants’ quality of lives in a building environment. Thus, 
the basic control objective for the multi-agent control system is to sustain the occupant 
comfort level while minimising the energy footprint of buildings. A framework for 
addressing building energy management with objectives of maximising occupant 
comfort, increased energy efficiency, decreased operation cost of energy utilisation, and 
consequently decreased greenhouse gas emissions is used to set as an optimisation goal 
for the current work. The work described will deal with an application of multi-agent 
coordination control for building management via data fusion and analysis for real-time 
monitoring and control of energy distributions in buildings and cyber integration along 
the lines of contemporary mandates. 

Our focus in this work is on computational intelligence approach to optimise  
multi-objective heating, ventilation and air-conditioning (HVAC) processes. There are 
several important components considered in the proposed approach, for instance, the 
representation of the multi-objective optimisation problem, the fitness function as well as 
the genetic search operators. With proper and domain-specific representation, we can 
easily apply our proposed approach to the multi-objective optimisation problem. We take 
into consideration the building operation constraints while optimising the HVAC 
processes. The rest of this paper is organised as follows. Details on the formulation of the 
problem are presented in Section 2. Section 3 and Section 4 present the solution and 
implementation, respectively, of the proposed approach substantiated with simulation 
results. Section 5 shows the results compared with the existing evolutionary approach 
with brief discussions. Lastly, we summarise the main contributions of this study in 
Section 6, and enlist several recommendations for the future research. 
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2 Problem formulation 

The multi-objective optimisation problem for building energy management can be 
formulated in terms of an energy cost function subject to constraints of the building 
operations. We consider the multi-objective problem as an optimisation problem with the 
conflicting objectives of minimising the power consumption, maximising the air quality 
comfort and maximising the thermal comfort. Intelligent control of the thermal comfort 
and air quality comfort are vital for both energy efficiency and occupant’s quality of 
living. The multi-objective optimisation problem is defined as follows: 

1
( ) ( )

n

i
F w i f i

=
=∑  (1) 

2 2 2

1 2 3( ) 1 1 1 , 1T L A

set set set
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 (2) 

where F indicates the overall occupant comfort level for multiple zones, w is the 
weighting coefficient for zone i, f(i) represents the overall customer comfort level, which 
falls into [0, 1]. It is the control goal to be maximised; δ1, δ2 and δ3 are the users-defined 
factors, which indicate the importance of comfort factors. δ1, δ2 and δ3 fall into [0, 1], and 
δ1 + δ2 + δ3 =1. e is the difference between set point and actual sensor measurement; Tset, 
Lset and Aset are the set points of temperature, illumination and air quality, respectively. 
The goal of the optimisation algorithm is to identify the optimal set of solutions. 
However, identifying the entire optimal set is practically impossible due to its size. In 
addition, for many problems, especially for combinatorial optimisation problems, proof 
of solution optimality is computationally infeasible. Therefore, a practical approach to 
combinatorial optimisation is to investigate a set of solutions that represent the optimal 
set within a given computational time limit. The optimisation engine generates smart 
solutions that can sustain a high level comfort (based on the user’s requirements) with 
minimal energy consumption. 

3 Solution methodology 

3.1 Multi-objective optimisation for building energy and comfort management 

The technology of multi-agent control system has been successfully utilised in various 
engineering fields. The fundamental element in multi-agent control system is the agent, 
which can be software or physical entity. In the current work, a hierarchical multiple 
agents-based control system is designed for building energy and human comfort 
management in the smart building. Figure 1 shows the overall system architecture. Based 
on the customer preferences and the set points predefined by the users, the multi-agent 
control system is utilised to reduce the error between the set points and sensor measured 
values so that the high comfort level is maintained and the energy consumption is 
reduced. The multi-agent control system is classified into different zone agents based on 
the distinct functions at multiple zones. The zone agents monitor the energy flow and 
responsible for energy management in its specific zone based on the occupant preference. 
The proposed algorithm is embedded in the master agent to optimise the set points. 
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Multiple control agents are used to control the devices which are related to the comfort 
factors. The main comfort factors considered in this study include environmental 
temperature, illumination level and indoor air quality. Accordingly, the control agents are 
classified into the temperature control agent, the illumination control agent, and the  
air-quality control agent. Through the cooperation of these multiple agents, the overall 
goal can be realised. 

Figure 1 Framework of the multi-agent control and management system (see online version  
for colours) 

 

In the current work, a hierarchical multiple agents-based control system is designed for 
building energy and human comfort management in the smart building. The proposed 
framework consists of two elements which are server control engine (energy management 
system) and client control application (cloud server and mobile application). Users can 
access energy management system through cloud-based server with remote control 
functionality. The proposed framework consists of three parts: energy management 
designer, energy management optimiser and energy management comparer. Firstly, 
energy management designer allows users to design and customise their floor layout in 
the simulator; next, energy management optimiser made use of the proposed algorithm 
(as shown in Figure 2) to generate the smart energy solutions in the form of task 
scheduling for multiple agents which can maintain HVAC in a higher occupant comfort 
level and energy efficiency than initial scheduling. Finally, energy management comparer 
provides the decision-making options that include the trade-offs by the comparisons of 
sensor values. Based on the occupant preferences and the set points predefined by the 
users, the multi-agent control system is utilised to reduce the error between the set points 
and sensor measured values so that the high comfort level is maintained and the energy 
consumption is reduced. The multi-agent control system is classified into different zone 
agents based on the distinct functions at multiple zones. The zone agents monitor the 
energy flow and responsible for energy management in its specific zone based on the 
occupant preference. The proposed algorithm is embedded in the master agent to 
optimise the set points. Multiple control agents are used to control the devices which are 
related to the comfort factors. The main comfort factors considered in this study include 
environmental temperature, illumination level and indoor air quality. Accordingly, the 
control agents are classified into the temperature control agent, the illumination control 
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agent, and the air-quality control agent. Through the cooperation of these multiple agents, 
the overall goal can be realised. 

In this study, the proposed algorithm is used to tune the set points according to the 
customer preference. As different users have different preferences, a GUI simulation 
platform has been developed, which offers the flexibility to customers to set their 
different comfort levels [Tmin, Tmax], [Lmin, Lmax] and [Amin, Amax] for temperature, 
illumination, and humidity, respectively. The three comfort zones predefined by the 
occupants according to their preferences will generate a three-dimensional restriction area 
to the optimisation problem. During the initialisation of the particles, the initial location 
should be within these users-defined zones. The objective function is defined in (1) and 
(2), so the optimisation goal is to maximise the objective function within the search 
space. The particle flies within the restriction space according to its memory and moves 
towards its best local position Lbest. When the termination condition is met, the particle 
with the highest fitness value is returned which contains the sequence of set points for 
each zone. This sequence of set points represents the solutions for power distribution and 
the corresponding overall comfort. 

Figure 2 Generic framework of the proposed algorithm (see online version for colours) 
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3.2 The proposed algorithm 

The proposed algorithm involves initialisation, evaluation and exploration of population. 
A single local search having certain learning roles and search features, would work 
effectively on a given problem of certain properties but fail to improve solutions on 
problems that possess contradictory properties. Hence, we propose a cooperative 
individual learning procedure so that multiple local search are hybridised and organised 
in a cooperative manner; they can work together to accomplish their shared optimisation 
goal, thus making the proposed algorithm robust and effective. We describe the proposed 
individual learning procedure as three distinct cooperative strategies, each having unique 
learning roles and search features. The three strategies of the individual learning 
procedure are described in greater details in the following sections. In our proposed 
algorithm, we first evaluate the particles (potential solutions) and check for dominance 
relation among the population. Next, we search for non-dominated solutions and store 
them as potential candidates in order to lead the search particles. It is worth noting that 
the variable size of the sequence of potential candidates is to improve the computational 
efficiency of the algorithm during optimisation. Additionally, we make use of crowding 
distance assignment operator to trim down the size of the candidates if it exceeds the 
allowable size. Lastly, we exploit an efficient evaluation strategy for evaluating the 
search space. By combining these operators, the algorithm is competent to sustain 
diversity in the population and successfully explore towards true Pareto optimal fronts. 
The main steps of the procedure are described as follow. 

3.2.1 Sequence of potential candidates 

The performance evaluation and selection of the best global particle guide are vital 
procedures in a multi-objective optimisation approach. They sustain a superior range of 
non-dominated solutions and influence the convergence capability of the algorithm. In 
the preceding iteration of the procedure, any of the non-dominated solutions from the 
sequence of potential candidates can be chosen as a global guide. We propose a 
performance evaluation method to make sure every particle in the population moves 
towards the true Pareto optimal region. Moreover, the crowding distance operator is used 
to perform restriction on the waypoint candidates. This operator ensures the highest 
crowding distance values of non-dominated solutions are stored as potential candidates. 
Subsequently, we evaluate and select the best global particle guide from a restricted size 
of the potential candidates. During optimisation, the variable size of the potential 
candidates manages to reduce the computational time. However, the computing 
requirement for the sorting and crowding value becomes greater when the size increases. 
Hence in the initial steps of the procedure, we set the size to half of the maximum size of 
potential candidates; followed by increasing the value in a stepwise manner to explore the 
solution space effectively. This procedure evaluates distinct particle guides from a 
restricted number of potential candidates and thus improves the algorithm performance 
by enabling the particles explore towards the true Pareto optimal region. 
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3.2.2 Crowding distance assignment operator 

The crowding distance assignment operator specifies an estimate of the density of 
solutions. In a particular solution, the average distance of two neighbouring solutions is 
the crowding distance value. We compute the crowding distance value by first sorting the 
solution sequence in ascending order of the objective function values and followed by 
securing boundary solutions with the smallest and greatest values of the objective 
function. Subsequently, the final crowding distance value of a solution is computed by 
adding up the individual crowding distance values in every objective function. The 
detailed computation of crowding distance value is presented as follows: 

1 Obtain the size of non-dominated solutions from the sequence of potential candidates 

[ ]1 2| | where , , , kl S S W W W= =  

2 Initialise distance. 

For 1 toi l=  

[ ]. 0S i dist =  

3 Calculate the individual crowding distance value. 

4 Sort each solution according to objective function value. 

 For each objective m 

sort( , )S S m=  

5 Set the boundary points to infinite to guarantee their selection. 

[1]. [ ].S dist S l dist= = ∞  

For 2 to ( 1)i l= −  

max min

[ 1]. [ 1].[ ]. [ ].
m m

s i m s i mS i dist S i dist
f f

+ − −
= +

−
 

3.2.3 Generic evaluation operator 

In this work, we apply the generic evaluation operator involving priorities, goals and 
Pareto sets in which we can place the objectives in levels of priority and impose 
constraints on each of them. The operator evaluates all non-dominated solutions in the 
population, determines if one Pareto dominates the other, and ranks them accordingly. In 
order to set the priority levels of our objectives for the optimisation problem, we classify 
them as follows: 

• constraints that the agent has to fulfil due to its building operations, or user 
requirements 

• zone-specific energy costs to be optimised. 
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The constraints that the agent must fulfil are set as high-priority levels. On the other 
hand, the energy costs to be optimised are set at lower priority levels in line with the goal 
of the optimisation. By using this method, we can simply modify the constraints or  
zone-specific energy costs as required by the different group of users. This improves the 
performance of multi-objective optimisation while extending from conventional 
optimisation algorithm. The evaluation operator works on a specific number of particles 
and distributes the non-dominated solutions along the true Pareto optimal front. Initially, 
this operator strives to substitute the non-feasible solutions with the evaluated particles of 
potential candidates. Subsequently, it attempts to exploit the search space in the sequence 
of waypoint candidates along the Pareto fronts. The evaluation procedure is described as 
follows. 

1 Sort the particle fitness function and get the particle index number respectively. 

2 Employ crowding distance assignment operator for the calculation of the density of 
solutions in the sequence of waypoint candidates. Sort them accordingly and choose 
one of the least crowded solutions from the waypoint candidates randomly as particle 
guide. 

3 Evaluate a specific number of particles and rank them accordingly. 

3.2.4 Constraint handling mechanism 

We adopt the constraint handling mechanism to deal with the constrained optimisation 
problems. In this simple and effective method, a solution i is considered as a constrained 
dominate solution j if it meets any of the conditions as follows: 

1 Solution i is deemed as feasible while solution j is not. 

2 Both solutions i and j are deemed as non-feasible, although solution i has a smaller 
overall constraint violation. 

3 Both solutions i and j are deemed as feasible when solution i dominates solution j. 

3.3 The multi-agent control system 

The multi-agent control system is classified into different agents based on the distinct 
functions at different zones. The zone agents monitor the energy flow and responsible for 
energy management in its specific zone based on the occupant preference. The proposed 
algorithm is embedded in the central coordinator-agent to optimise the set points. 
Multiple local controller-agents are used to control the devices which are related to the 
comfort factors. The main comfort factors considered in this study include environmental 
temperature, illumination level and indoor air quality. Accordingly, the local  
controller-agents are classified into the temperature controller-agent, the illumination 
controller-agent, and the air-quality controller-agent. 

Through the cooperation of these multiple agents, the control objective which is to 
maximise the occupant comfort and minimise the energy consumption simultaneously 
can be achieved. By way of example, we consider the multiple building zones with 
multiple agents portrayed in Figure 3. 
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Figure 3 The multiple zones of a building (see online version for colours) 

 

Lastly, we demonstrate the efficiency and applicability of the proposed approach in the 
following sections. 

4 Experimental results 

In this study, we use set coverage metric (SC) and spacing metric (SP) as performance 
measures to assess the performance of our proposed approach. Since heuristics 
algorithms have no guarantee to find the global optimal solution within the limited 
iterations, in this study we apply our proposed approach by setting the initial population 
of the algorithm to 200 and specify the size of non-dominated solutions as 200. We then 
run the algorithm for 500 iteration steps to increase the possibility of achieving the global 
optimisation. Generally, more runs of the optimisation algorithm will lead to a higher 
probability of achieving better results, but it will inevitably require more computational 
time. After many trials, it was found that 500 is a reasonable number of runs for 
balancing the solution quality and computational cost. The SC (A, B) metric produces the 
solution dominance and relative convergence between two solution vectors A and B; 
calculating the proportion of B, which is weakly dominated by A. The role of SP metric 
is to assess the distribution of vectors throughout the set of non-dominated solutions and 
indicate how evenly the generated non-dominated solutions in the approximation set are 
distributed in the search space. The computational complexity of the algorithm is 
dominated by the objective function computation, crowding distance computation and the 
non-dominated comparison of the particles in the population. If there are M objective 
functions and N number of solutions (particles) in the population, then the objective 
function computation has O(MN) computational complexity. For comparison purposes, 
we run the existing evolutionary algorithm by specifying the initial population as 200; 
probability of crossover as 0.9; and probability of mutation as 1/n (n is the size of real 
variables). 
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Next, we set the crossover and mutation distribution index values to 20 and 100, 
respectively and run the evolutionary algorithm for 500 generations. The main objective 
is to find an optimum solution which minimises the energy costs while maximising the 
occupant comfort. The main idea is to have a generated solution with maximal level of 
occupant comfort while complying with building energy constraints and user 
requirements. To show the effectiveness of the proposed algorithm, it is applied to energy 
consumption, air quality comfort and thermal comfort as three objectives of the 
optimisation engine for solving the multi-objective problem. To examine the 
performance, we then carry out ten independent runs by applying both the proposed 
algorithm and the evolutionary algorithm. The resulting statistics for both the algorithms 
is tabulated in Table 1. 
Table 1 Resulting statistics by the proposed algorithm and the existing evolutionary algorithm 

for the multi-objective problem 

Statistics 

Performance metric 
Set coverage (SC) metric  Spacing (SP) metric 

SC(A, B) SC(B, A)  A B 
Best 0.1670 0.0360  164.9022 196.9804 
Worst 0.7031 0.5080  236.3021 630.2212 
Mean 0.4466 0.2302  206.6202 402.4579 
Variance 0.0349 0.0254  1,136.9908 26,066.7456 
SD 0.1668 0.1426  30.1462 146.5188 

Figure 4 Non-dominated solutions obtained using the proposed algorithm (see online version  
for colours) 
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In SC(A,B), A is the proposed algorithm and B is the existing evolutionary algorithm. 
The best performing algorithm is indicated by bold numbers. From Table 1, it can be seen 
that the mean value of SC (A, B) is higher than the mean value of SC (B, A) pertaining to 
set coverage metric. The SC (A, B) metric represents the proportion of B solutions that 
are weakly dominated by A solutions. Therefore, we can conclude that our proposed 
algorithm is able to perform better than the existing evolutionary algorithm. Likewise, the 
proposed algorithm has lower spacing metric mean value than the existing evolutionary 
algorithm; indicating that the proposed algorithm obtains the better distribution of Pareto 
optimal solutions. A sample of the experimental result corresponding to SC (A, B) 
median value is presented in Figure 4 for illustration purposes. 

It can be seen that the proposed algorithm is competent of generating a  
well-distributed set of Pareto optimal solutions. The remarkable performance of the 
proposed algorithm can be attributed to the application of the sequence of potential 
candidates and the generic evaluation operator. The evaluation operator distributes the 
non-dominated solutions along the true Pareto optimal front and improves the exploratory 
capabilities of the algorithm to prevent premature convergence. In the preceding iteration 
of the procedure, any of the non-dominated solutions from the sequence of potential 
candidates are chosen as a global guide. The selection of the global guide of the particle 
swarm is a crucial step in a multi-objective algorithm. It affects both the convergence 
capability of the algorithm as well as the good spread of non-dominated solutions. Our 
proposed algorithm manages to produce boundary solutions easily in this case. 

4.1 Selection of resultant solution 

It is necessary to reduce the large set of solutions to a few representative solutions after 
obtaining many solutions which are true Pareto optimal with uniform spread and wide 
coverage. In order to do that, we make use of a simple clustering algorithm, which 
reduces the large number of final Pareto solutions (N) to a few representative solutions 
(N). 

4.2 Clustering approach 

Our proposed approach is capable of finding optimal solutions by trading off the 
predefined criteria. The procedure is likely to find N non-dominated solutions after 
running for an adequate number of iterations. However, it is time-consuming to consider 
only one solution among the N non-dominated solutions. Therefore, we exploit a 
clustering approach in which only a few representative N non-dominated solutions are 
well-dispersed from each other on the solution space. Firstly, each solution is assumed to 
fit into a distinct cluster and the gap between each pair of clusters is then computed. Next, 
the clusters with the smallest gap are merged together to make up a significant cluster. 
Subsequently, the procedure is terminated after a satisfactory number of clusters are 
discovered and only one best solution from each cluster is stored while the rest of them 
are discarded. The detailed clustering approach is described as follows: 

1 Initialise a cluster group C; Represent each non-dominated solution i as a separate 
cluster. i.e., Ci = {i}, C = {C1, C2, …, CN} 

2 If, | |C N≤  proceed to 5, else proceed to 3. 
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3 Compute the gap for each pair of clusters by (3), 

1 2
12 ,1 2

1 ( . )
. i c j c

d d i j
c c ∈ ∈

= ∑  (3) 

 where d12 denotes the gap between two individuals i1 and i2 in objective space. 

4 Search for (i1, i2) pair with respect to the smallest gap and followed by merging the 
two clusters 1iC  and 2iC  together. The size of C is reduced by one. Return to #2. 

5 Store the best solution with least average gap from each cluster and discard the rest. 

Lastly, with the well-spread clusters available on the solution space, a composite measure 
is assigned to each cluster based on its location on the space so as to facilitate the 
selection of resulting optimum solution. The detailed Pseudo-weight vector approach is 
presented in the following section. 

4.3 Pseudo-weight vector approach 

The pseudo-weight vector is assigned according to the relationship between the found 
solution and the individual criteria, 

( ) ( )
( ) ( )

max max min

max max min
1

( )

( )

ii i i
i M

m mi im

f f x f f
ω

f f x f f
=

− −
=

− −∑
 

where min
if  and max

if  are the minimum and maximum values of the ith criteria, 
respectively. Subsequently, a straightforward approach is to select the desired solution 
with the computed weight vectors. This provides ease in selection of final solution for 
multi-objective optimisation problem. 

5 Results and discussions 

In this section, the optimised solution is going to be compared with the initial layout for 
the simplest case. The schedules generated from optimisation reduce power consumption. 
Figure 5 shows the layout simulation before optimisation. The energy consumption can 
be seen in the right panel. The energy measured for this case is 56 with the initial 
schedule we set randomly. It can be seen that the temperature is not steady and 
maintained at the desired temperature which is 26°C. 

The optimised schedule helps to reduce the power consumption while maintaining the 
desired temperature and humidity. As shown in Figure 6, the energy consumption 
measured is only 43 using the proposed algorithm. The graph at the bottom of the figure 
shows that the temperature is maintained at 26°C. 

As mentioned earlier, there are two types of algorithm applied for this multi-objective 
optimisation process. Using the proposed algorithm, there are 15 solutions generated. 
User can choose any solution to simulate the optimised zone layout. The optimisation 
process takes longer with the existing evolutionary algorithm, for e.g., hierarchical 
asynchronous parallel multi-objective evolutionary algorithm (HAPMOEA). 
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Figure 5 Initial layout showing power consumption (see online version for colours) 

 

Figure 6 Optimised layout showing power consumption using the proposed algorithm (see online 
version for colours) 

 

There are 21 solutions generated while the optimisation process is carried out with 
HAPMOEA and the resulted power consumption is about 48. 

After the optimisation procedure, different solutions will be generated which could be 
better than the initial schedule or worse than the initial one. But certainly, the optimised 
schedule will be able to maintain the temperature and humidity at certain comfort level. 
Next, we conduct the experiments with two zones and two air conditionings. Initially, the 
total power consumption of the two zones is about 152.8 with unsteady temperature and 
humidity. 



   

 

   

   
 

   

   

 

   

   74 E.M. Kan et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 7 Optimisation process using HAPMOEA (see online version for colours) 

 

Figure 8 Optimised layout showing power consumption using HAPMOEA (see online version 
for colours) 

 

Subsequently, we optimise the schedule with the proposed algorithm. The total power 
consumption for two rooms is 79.6 while maintaining desired temperature and humidity. 
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The optimisation process is then carried out with HAPMOEA. The total power 
consumption is 82.8 which is higher compared to the solution generated by the proposed 
algorithm. User can choose the preferred schedule based on their requirement by setting 
the generation and population size for the optimisation process to have more accurate and 
desired solutions. 

Figure 9 Initial layout showing power consumption (see online version for colours) 

 

Figure 10 Optimised layout showing power consumption using the proposed algorithm  
(see online version for colours) 
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Figure 11 Optimised layout showing power consumption using HAPMOEA (see online version 
for colours) 

 

6 Conclusions 

A new multi-objective optimisation approach is presented for generating Pareto-optimal 
solutions for building energy management. This method is developed by integrating 
Pareto dominance principles. In addition, an efficient evaluation strategy and a sequence 
of potential candidates with variable size are introduced. The proposed approach is 
applied to optimise HVAC processes by minimising power consumption without 
compromising the occupant comfort. Using the proposed approach, the solutions yield a 
trade-off among the criteria identifying a set of alternatives that define optimal solutions 
to the multi-objective problem. The results obtained show that the proposed approach is a 
viable alternative for intelligent building energy control that makes buildings more 
intelligent, resource efficient and comfortable for occupants. Further enhancements based 
on other computational intelligence approaches (Meuth et al., 2009; Gwee and Lim, 
1996, 1999; Cao et al., 2006; Lim and Takefuji, 1990; Lim et al., 2002, 2004) can also be 
considered in future. 
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