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Abstract: In this study, we investigate how the presence of ‘stubborn’ 
individuals affects other individuals’ vaccination behaviour with regard to the 
spread of infectious disease in a lattice populations and a Barabási-Albert  
scale-free network. (In this context, ‘stubborn’ individuals are those who are 
intransigent about their own vaccination strategy). To meet this research 
objective, we develop a combined model that is constructed from 
epidemiological and vaccination dynamics and is based on adaptive imitation 
behaviour. With regard to preventing disease propagation, the stubborn 
vaccinated individuals act as ‘good role models’, as they always take vaccines, 
whereas the stubborn unvaccinated individuals, in contrast, act as ‘bad role 
models’, as they always refuse vaccines. As a result, which stubborn 
individuals are more influential among the full population in terms of voluntary 
vaccination behaviour depends not only on their proportion within the 
population, but also the network structure and the cost of vaccination. 

Keywords: vaccination decision; mathematical epidemiology; evolutionary 
game theory; vaccine-preventable diseases. 

Reference to this paper should be made as follows: Fukuda, E. and  
Tanimoto, J. (2016) ‘Effects of stubborn decision-makers on vaccination and 
disease propagation in social networks’, Int. J. Automation and Logistics,  
Vol. 2, Nos. 1/2, pp.78–92. 

Biographical notes: Eriko Fukuda is a PhD student at the Interdisciplinary 
Graduate School of Engineering Sciences, Kyushu University. Her current 
research interests include complex systems, epidemiology, and evolutionary 
games. 

Jun Tanimoto is a Professor at Kyushu University. He obtained his PhD in 
engineering from Waseda University, and his current research interests include 
complex science, evolutionary games, traffic flows, urban climatology, and 
building physics. 

This paper is a revised and expanded version of a paper entitled ‘Impact of 
stubborn individuals on a spread of infectious disease under voluntary 
vaccination policy’ presented at The 18th Asia Pacific Symposium on 
Intelligent and Evolutionary Systems (IES 2014), Singapore, 10–12 November 
2014. 

 



   

 

   

   
 

   

   

 

   

    Effects of stubborn decision-makers on vaccination and disease propagation 79    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

1 Introduction 

In 1918, the Spanish flu produced the most serious pandemic in recorded history; the 
Asian flu (1957), the Hong Kong flu (1968), and the swine flu (2009) have been the most 
recent pandemics. In humankind’s long history, the spread of global infectious diseases 
such as the flu has remained a serious threat. Much effort has been devoted, over an 
extended period, to modelling and analysing the spread of global infectious diseases, with 
an eye to controlling and preventing it (Anderson and May, 1991; Bailey, 1975). 

Pre-emptive vaccination is one of the most powerful public health measures by which 
to immunise people against vaccine-preventable diseases like influenza, measles, and 
chickenpox (Anderson and May, 1991), and people are basically expected to get 
themselves voluntarily vaccinated for such infectious diseases. Under a voluntary 
vaccination policy, an individual’s decision-making attitude vis-à-vis vaccination is 
determined by several factors, such as perceived risks of infection and vaccination,  
self-interest, religious reasons, and the vaccination response behaviour of others 
(neighbours), inter alia (Basu et al., 2008; Bauch et al., 2003; Bauch and Earn, 2004; 
Bauch, 2005; Bauch et al., 2007; Chapman and Coups, 1999; Chapman and Coups, 2006; 
Funk et al., 2010; Schimit and Monteiro, 2011). When the vaccination level within a 
population is increased and it exceeds a critical level, herd (community) immunity – 
which prevents an epidemic from spreading further in the population – is attained 
(Anderson and May, 1991). Consequently, the herd immunity as public goods protects 
unvaccinated individuals indirectly. As a result, unvaccinated individuals escape 
infection without incurring any of the possible risks imposed by vaccination (e.g., 
complications, side effects, and economic cost) (Anderson and May, 1991; Brisson and 
Edmunds, 2003). As a result, some individuals may be tempted to take a ‘free ride’ on 
this benefit – in other words, it decreases their incentive to get vaccinated. This is the 
well-known dilemma with respect to vaccination that leads to conflict between the 
rational decision-making of each individual and the optimal vaccination level for the 
whole of society (i.e., the aforementioned critical level for herd immunity). Some reports 
indicate that this policy makes it very difficult or even impossible, in the absence of other 
incentives, to completely eradicate a vaccine-preventable disease (Bauch et al., 2003; 
Bauch and Earn, 2004; Bauch et al., 2007; Vardavas et al., 2007). 

To characterise the decision-making process of individuals and the vaccination 
dilemma itself, in recent years, some researchers have studied the voluntary vaccination 
behaviour of individuals who face epidemics. Many of these studies use an evolutionary 
game theoretic framework in epidemiologic dynamics, or the so-called vaccination game 
(Bauch, 2005; Bauch and Bhattacharyya, 2012; Fu et al., 2011; Fukuda et al., 2014; Liu 
et al., 2012; Ndeffo Mbah et al., 2012; Perisic and Bauch, 2009; Vardavas et al., 2007). 
For example, Bauch (2005) constructed a combined framework where epidemiological 
dynamics is inserted into the imitation (learning) dynamics of vaccination behaviour, 
based on evolutionary game theory; he found that an individual’s imitation behaviour 
with respect to vaccination can lead to oscillations in disease outbreaks. Early studies 
with regard to the vaccination game have not taken into account the network structure 
where diseases propagate in the population – that is, the population has been assumed to 
be well-mixed. However, in reality, any network has a certain structure. Therefore, much 
researchers have focused on the disease propagation in social (contact) networks, inter 
alia (Keeling and Eames, 2005; Meyers et al., 2005; Pastor-Satorras and Vespignani, 
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2001). Accordingly, Fu et al. (2011) studied the impact of population structures on 
voluntary vaccination behaviour, based on imitation dynamics; they found that the 
population structure acts as a ‘double-edged sword’ for public health – namely, it 
depends largely on the cost of vaccination in promoting individual vaccination behaviour.  
Ndeffo Mbah et al. (2012) examined the impact of imitation behaviour with vaccinations 
in social contact networks. They asserted that imitation behaviour may help impede the 
eradication of infectious diseases, because such behaviour leads to clusters of susceptible 
individuals within a network. 

Basically, in many studies that feature the vaccination game, it is often assumed that 
every individual behaves according to the same perceived risks of infection. In reality, it 
is very possible that some individuals within a population overestimate both the incidence 
of a disease and the perceived risks of infection and those oversensitive ones can 
consistently take vaccines. Based on this point, Liu et al. (2012) investigated the impact 
of the presence of stubborn (i.e., committed) vaccinated individuals who always hold a 
vaccination strategy, with regard to vaccination coverage and epidemiological dynamics. 
They found that a small fraction of these stubborn individuals who always take vaccines 
can inhibit the formation of clusters of susceptible individuals; these stubborn individuals 
thus help to promote vaccination coverage by acting as ‘steadfast role models’ in the 
population. 

However, it is not necessarily so that stubborn individual behaviour always features 
the taking of vaccines. Some people always underestimate the perceived risks of 
infection, due to a lack of knowledge about infectious disease – and/or they may 
overestimate the perceived risks of vaccination based on scientifically groundless 
information. As Jansen et al. (2003) pointed out, it is actually a serious cause of a 
reduction in vaccination coverage – that is, separate and aside from the stubborn 
vaccinated individuals, there also exist within the population stubborn unvaccinated 
individuals who always take a no-vaccination strategy. Accordingly, within a population, 
stubborn individuals who always hold their own strategy tend to fall into one of two 
types: stubborn vaccinated and unvaccinated individuals. 

For the above reasons, in this study, we look to examine how the presence  
of stubborn vaccinated and unvaccinated individuals (i.e., ‘zealots’) affects  
individual-level vaccination behaviour and the spread of infectious disease within a social 
network and under a voluntary vaccination policy. To this end, we integrate an 
evolutionary game theoretic approach with simple epidemiological dynamics – namely, 
susceptible-infection-recovered (SIR) dynamics (Kermack and McKendrick, 1927). We 
focus on a flu-like infection as a typical seasonal (periodic) infectious disease, because 
the protective efficacy against such infectious diseases usually lasts for one season only, 
and so individuals need to decide every season whether or not to be vaccinated. 

This paper is organised as follows. The details of our combined model with 
epidemiological dynamics and a decision-making process with regard to vaccination 
(vaccination game), as well as methods of computational simulation, are described in 
Section 2. Next, the results obtained for the respective networks are presented in  
Section 3, along with relevant discussion. Then, conclusions and suggestions for future 
research are presented in Section 4. Finally, complementary results with regard to 
Sections 2 and 3 are shown as the Supplementary material. 
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2 Model and simulation methods 

2.1 Vaccination game 

We consider a population in which every member undertakes vaccination behaviour 
adaptively in the midst of a seasonal and periodic flu-like disease. Stubborn vaccinated 
individuals (SVs) and stubborn unvaccinated individuals (SUs) are present in the 
population. Immunisation efficacy is usually impermanent against such infectious 
disease, and so individuals need to take a vaccine each season to acquire immunity 
against the infectious disease of that season. As in Fu et al. (2011), the vaccination 
dynamics of our model consist of two stages. 

In the first stage, the vaccination campaign, each individual decides in advance of the 
seasonal epidemic whether or not take a vaccine, as every individual is exposed to the 
risk of becoming infected. An individual who chooses a strategy involving the taking of 
the vaccine (including SVs) incurs the cost of vaccination Cv, which may include the 
monetary cost and any perceived risks, such as complications and adverse side effects 
(Galvani et al., 2007). For the sake of simplicity, we assume that a (stubborn) vaccinated 
individual acquires perfect immunity against the disease during the season; on the other 
hand, (stubborn) unvaccinated individuals are exposed to the risk of becoming infected 
that same season. At the second stage, the epidemic season, randomly selected 
susceptible individuals (including SUs) I0 who take the no-vaccination strategy are 
identified as those initially infected by the epidemic strain; the disease then transmits in 
the population via a social network, in line with SIR dynamics. In the SIR model, a 
population is divided into three groups: susceptible, infectious, and recovered ones. 
Susceptible individuals become infected, with the parameter β – the disease transmission 
rate per day per person by coming into contact with infectious ones; they themselves then 
become infectious. They recover from their disease, with the parameter γ – the recovery 
rate per day (i.e., the inverse of the mean number of days required to recover from one’s 
own disease). Here, recovered individuals, as well as (stubborn) vaccinated ones, have 
acquired perfect immunity against the infectious disease. In numerically simulating the 
SIR dynamics in a social network, we apply the Gillespie (1977) algorithm. For details on 
how to apply the Gillespie algorithm to this epidemiological process, see Fu et al. (2011). 

An epidemic season is terminated by the disappearance of every infectious individual 
from the population. Infected individuals (including infected SUs) during the epidemic 
season incur the cost of infection Ci, which may include the cost of healthcare, lost 
productivity, the possibility of pain or mortality, and so on (Galvani et al., 2007). In 
contrast, successful individuals (including healthy SUs) who do not get the vaccine and 
yet remain healthy are called free riders, and they avoid any payment. For simplicity, we 
rescale the cost without loss of generality by defining the relative cost of vaccination  
Cr = Cv / Ci (For a typical seasonal flu, an estimation shows that the value of Cr may be 
not so large in real world (Fu et al., 2011; Galvani et al., 2007). However, any estimation 
has many assumptions and there must be fluctuation and unknowability in some factors 
contributing to the final cost, so that we cannot give an upper bound of Cr (obviously, it 
must be smaller than one). Thus, we here set 0 ≤ Cr ≤ 1 to take every possibility into  
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consideration). Then, according to the final epidemic state (vaccination strategy and 
health condition) following the epidemic season, a payoff to an individual i, πi, is 
stipulated and takes one of three types: 

v , vaccination and healthy;
1, no-vaccination and infected;

0, no-vaccination and healthy.
i

C
π

−⎧
⎪= −⎨
⎪
⎩

 (1) 

2.2 Strategy adaptation 

At the end of every two stages, each individual re-examines whether to change or retain 
her own vaccination strategy, via an imitation process that is based on the payoffs of her 
and her neighbours for the next season; this process excludes stubborn individuals, as 
they will retain their own strategies regardless of these factors (Liu et al., 2012). The 
details of the rules for strategy adaptation are as follows. An individual i randomly 
choose a neighbour individual j in the network. Let si and sj denote the strategies 
(vaccination or no-vaccination) of individual i and her neighbour j, respectively. The 
probability P (si ← sj) – where the individual i who takes the strategy si imitates the 
strategy sj of individual j – is given by a pairwise comparison of their payoff difference πi 
– πj, according to the Fermi function (Traulsen et al., 2007; Szabo and Toke, 1998), 

( )
( )

1 ,
1 exp

i j
i j

P s s
π π κ

← =
+ ⎡ − ⎤⎣ ⎦

 (2) 

where κ denotes the selection pressure (the sensitivity of individuals to the difference in 
the payoffs). For κ → ∞ (weak selection pressure, not information completeness about 
the payoffs of individuals), the probability P (si ← sj) approaches 1/2 asymptotically, 
regardless of their payoff difference πi – πj, because an individual i is ultimately 
insensitive to the payoff difference against another individual j. On the other hand, for κ 
→ 0 (strong selection pressure), they definitely update the successful strategy that earns 
the higher payoff, even if the payoff difference is very small, because they are ultimately 
sensitive to the payoff difference. This comparison rule has been widely accepted in 
evolutionary game theory (Wang et al., 2013). In this study, we set κ = 1, without loss of 
generality. The value of κ reflects behaviour wherein individuals basically adopt a 
successful strategy; however, they occasionally do fail, because of irrationality or the 
mistakes made by ordinary individuals. Note that, if an individual i and her neighbour j 
were to take the same strategy, and/or if an individual i were a stubborn individual (SV or 
SU), then P (si ← sj) = 0 – in other words, she will hold her current strategy, regardless of 
the payoff difference. Figure 1 shows the flow of our vaccination dynamics model 
described thus far. 
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Figure 1 Flow of our model in which vaccination dynamics are modelled as a two-stage process 

 

2.3 Simulation setting 

In our simulations, during the initial stage, half the population of vaccinated individuals 
(including a certain fraction of SVs, fSV) and half the population of the unvaccinated 
(susceptible) individuals (including a certain fraction of SUs, fSU) are randomly 
distributed over the population; the population size is 4,900. We assume that the fractions 
of stubborn individuals are not larger than that of normal individuals – that is, fSV + fSU ≤ 
0.5. Both types of stubborn individuals (i.e., SVs and SUs) hold the same state 
throughout a simulation – in other words; they occupy the same nodes, while holding the 
same strategy from the first season to the final season. After that, an epidemic strain 
randomly infects susceptible individuals, as the initial number I0 = 5; the epidemic then 
spreads according to SIR dynamics throughout a social network. It is widely known that 
the features of disease propagation significantly depend on the network structure 
involved (Keeling and Eames, 2005). In addition, the network structure of flu 
propagation in human society has been yet identified explicitly, even though 
mathematical modelling studies have been advanced in sexually transmitted diseases 
(Colgate et al., 1989; Liljeros et al., 2001; Schneeberger et al., 2004) and flu infections in 
animals such as avian flu (Small et al., 2007). Thus, in this study, we consider a square 
lattice with a von Neumann neighbourhood and a Barabási-Albert scale-free (BA-SF) 
network with an average degree <k> = 4 (Barabási and Albert, 1999) as a typical 
population structure; we then calibrate the value of β, such that the final proportion of 
infected individuals across each network will be 0.9 (see Supplementary material) (Fu  
et al., 2011). Here, we set β = 0.46 for the square lattice and β = 0.55 for the BA-SF 
network, and γ = 1/3 as the recovery rate. A typical seasonal flu is assumed to determine 
these disease parameters. The vaccination coverage and final epidemic size are updated 
by iterating each two-stage process (the vaccination campaign and the epidemic season) 
and the imitation process of the vaccination strategy. The equilibrium (stable-state) 
results shown in Figures 2 (except for snapshots) to 7 represent average fractions over the 
final 1,000 of 3,000 iterations in 100 independent simulations. 
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3 Results and discussion 

3.1 General discussion 

Each of (A)–(D) in Figures 2 and 5 show stable-state values for vaccination coverage and 
final epidemic size in each network as functions of the relative cost of vaccination Cr, for 
different fractions of SUs (fSU) when the fraction of SVs (fSV) equals 0 or 0.1. The cases 
shown in the solid lines (fSV = fSU = 0) in these figures – where there is neither an SV nor 
an SU in the population – correspond to the results in Fu et al. (2011). The cases shown 
in the dashed lines (fSU = 0), where there is no SU in the population, correspond to the 
results in Liu et al. (2012). The larger the fSU becomes, the more vaccination coverage 
declines – and, as a result, the more the final epidemic size increases with the same 
values of Cr over the full range of Cr. 

Figures 3 and 6 show vaccination coverage and final epidemic size. Figures 4 and 7 
comprise another set of contour diagrams that show the difference in the vaccination 
coverage and final epidemic size relative to the case where fSV = fSU = 0 is assumed 
(plotted at the origin in Figures 3 and 6), as functions of the fraction of SVs (fSV) and that 
of SUs (fSU),for different Cr in each network. As can be seen from these counter diagrams 
(in particular, Figures 4 and 7), the presence of SUs exerts an adverse effect on the spread 
of infectious disease, in comparison to the case where fSV = fSU = 0, for the range where 
Cr is small – which corresponds to the negative region (less vaccination than the case of 
fSV = fSU = 0) in Figure 4 and the positive region (larger final epidemic size than the case 
of fSV = fSU = 0) in Figure 7. On the other hand, as Cr becomes larger, the presence of SVs 
exerts a favourable effect in preventing the spread of disease, and this corresponds to the 
positive and negative regions in Figures 4 and 7, respectively. This tendency is 
attributable to each individual’s vaccination incentive. For the range where Cr is small, 
the vaccination incentive is high in the first place, because an individual can take a 
vaccine at a low cost; hence, the favourable effect of the presence of SVs in promoting 
vaccination behaviour is weak. Meanwhile, if Cr is large, the vaccination incentive is 
already low (since the vaccination cost is expensive), and so in this case, the adverse 
effect produced by the presence of SUs in promoting no-vaccination behaviour is weak. 

The effect of the presence of SUs in the case of a BA-SF network is much more 
marked than that of a lattice population case. This is because the degree heterogeneity  
of the BA-SF network makes it easier for disease to propagate than in a lattice population 
– one of archetype homogeneous graphs (see Figure 8) (Keeling and Eames, 2005). In 
such a network, individuals who have many neighbours (so-called hub individuals) tend 
to take vaccines, since they can easily become infected [Figures 5(E) and (F)]. Moreover, 
the vaccination/no-vaccination behaviour of many individuals who have relatively few 
neighbours is promoted by imitating the strategy of hub individuals (Fu et al., 2011). 
Therefore, the adverse effect on disease propagation that is produced by the presence of 
SUs is notably enhanced in the population of the BA-SF network – and more so than in 
lattice populations – since it is intrinsically difficult to promote voluntary vaccination 
behaviour in lattice populations. 

Concerning the lower panels of Figures 4 and 7 (final epidemic size), we should note 
the following. From the social application viewpoint, it might be important to determine 
whether or not the region above the 45-degree dashed line that is still marked with a 
negative value (i.e., smaller final epidemic size than the case of fSV = fSU = 0) does exist, 
and if so, how wide that region is. In this particular region, disease propagation is more 
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efficiently suppressed than is the case with fSV = fSU = 0, even though the number of SUs 
is larger than that of vaccinated individuals. In this sense, obviously, the lattice 
population more effectively assists in preventing disease propagation than the BA-SF 
network, since the aforementioned region in the lattice population case appears even in a 
smaller-Cr setting. 

To examine the details pertaining to the effect of population structure, the results we 
obtained, as well as relevant discussion of the respective networks, are offered below in 
the following sections. 

3.2 Lattice populations 

Figures 2(E) and (F) illustrate typical snapshots of the system after it approaches 
equilibrium for fSU = 0 and 0.2, when Cr = 0.2 and fSV = 0. For the fSU = 0 in Figure 2(E), 
the vaccinated individuals form some small clusters that represent about 17% of the 
population, and about 27% of the population gets infected. For fSU = 0.2 in Figure 2(F), 
about 9% of the vaccinated individuals form some small clusters, and about 62% of the 
population gets infected. Therefore, the presence of SUs slightly promotes no-vaccination 
behaviour in the population, and a large epidemic ensues. The reason for this is explained 
as follows. If SUs are present in the population, they provoke neighbouring individuals to 
imitate the SUs’ strategy, which ultimately leads to reduced vaccination coverage. As a 
result, larger clusters of susceptible individuals form, and they comprise a larger final 
proportion of infected individuals. However, if vaccination coverage were to decline 
further, it would be difficult for individuals to take a free ride on the benefit – that is, the 
unvaccinated individuals cannot be protected indirectly by the vaccinated individuals. 
Therefore, the SUs cannot ‘seduce’ individuals not to voluntarily get vaccinated, and a 
further reduction of vaccination coverage will not occur. 

Figures 2(G) and (H) illustrate typical snapshots of the system after the system 
approaches equilibrium for fSU = 0 and 0.2, when Cr = 0.2 and fSV = 0.1. For fSU = 0 in 
Figure 2(G), about 63% of the vaccinated individuals, as a proportion of the total 
population, form large clusters that are evenly distributed throughout the lattice 
populations (Liu et al., 2012); about 1% of the total population becomes infected. For the 
case where fSU = 0.2 in Figure 2(H), 27% of the vaccinated individuals form  
small clusters that are evenly distributed throughout the lattice populations; about 5% 
become infected, even when fSV < fSU. As can be seen from these figures – specifically, 
Figure 2(H) – the SVs who are distributed randomly throughout the lattice populations 
promote individual vaccination behaviour, and help to form clusters of vaccinated 
individuals who are evenly distributed throughout the population, even when fSV < fSU; its 
impact inhibits SUs from ‘seducing’ the entire population to avoid vaccination and, as a 
result, the epidemic is greatly mitigated. The detailed reason for this is as follows. As 
described above, to prevent an infectious disease from spreading in the lattice 
populations, it is effective to inhibit susceptible individuals from forming clusters 
(Ndeffo Mbah et al., 2012). The promotion of vaccination coverage is effective in doing 
this; it is also effective to distribute the clusters of the vaccinated individuals evenly 
throughout the network, because any of these clusters shuts out the initial infected ones 
who can appear anywhere in the network. For the case where fSV = fSU = 0 in Figure 2(E), 
infectious disease spreads widely in the population, because the clusters of vaccinated 
individuals are small – and thus, the vaccination coverage is low. Moreover, they do not 
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distribute evenly throughout the network. In contrast, in the case where fSV = 0.1,  
fSU = 0.2 in Figure 2(H), not only does it promote imitation behaviour with respect to 
vaccination, but it also helps form and evenly distribute clusters of vaccinated individuals 
– even though the cluster sizes are small – and thus preclude the clustering of susceptible 
individuals, thanks to the presence of SVs who are randomly distributed throughout the 
population. Therefore, the small fraction of SVs has a large impact on the suppression of 
disease propagation, thanks to the imitation process and the local interactions of 
structured populations [for a detailed discussion, see Liu et al. (2012)]. 

Figure 2 Vaccination coverage (A and C) and final epidemic size (B and D) as functions of the 
relative cost of vaccination Cr for different fractions of SUs (fSU) when the fraction of 
SVs (fSV) equals 0 (A and B) and 0.1 (C and D); and typical snapshots of systems in the 
equilibrium state when Cr = 0.2 (E–H) in the lattice populations 

 

Figure 3 Contour diagrams of vaccination coverage (upper six panels) and final epidemic size 
(lower six panels), as functions of the fraction of SVs (fSV) and of SUs (fSU) when Cr = 0 
(A and B), 0.1 (C and D), 0.2 (E and F), 0.5 (G and H), 0.6 (I and J), and 1 (K and L) in 
the lattice populations 
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Figure 4 Contour diagrams of differences in vaccination coverage (upper six panels) and final 
epidemic size (lower six panels) between the case at origin and the others when Cr = 0 
(A and B), 0.1 (C and D), 0.2 (E and F), 0.5 (G and H), 0.6 (I and J), and 1 (K and L) in 
the lattice populations 

 

3.3 Barabási-Albert scale-free networks 

Figure 5(E) shows the fraction of vaccinated individuals as a function of the number of 
neighbours when Cr = 0.2 and fSV = 0. As seen in this figure, there is a general tendency 
wherein the greater the number of neighbours (with a higher degree) that individuals 
have, the more of them that tend to be vaccinated, regardless of the presence of SUs. 
However, in the case where fSU = 0.2, not only is it that the vaccination coverage in the 
whole population is more inhibited than in the case of fSV = fSU = 0, but also the fraction 
of vaccinated individual individuals among the hub individuals is more scattered than is 
the case with fSV = fSU = 0. This is attributed to the fact that SUs are randomly chosen in 
the population. It is well known that the BA-SF network is one type of scale-free network 
in which, according to power law, a great majority of individuals have few connections 
and there are relatively few hubs. It is important to note that in a BA-SF network, the 
hubs who can become ‘super-spreaders’ should be sure to take vaccines, in order to 
suppress disease propagation (Keeling and Eames, 2005). Thus, even if a single hub is 
selected as a SU, this could easily lead to a large reduction in vaccination coverage 
among individuals of the same degree within that particular hub. Because of this 
reduction in vaccination coverage among hubs, those who have fewer contacts connected 
to the hubs tend to imitate the no-vaccination strategy. These facts yield the result shown 
in Figure 5(E). 

Figure 5(F) shows the fraction of vaccinated individuals as a function of the number 
of neighbours when Cr = 0.2 and fSV = 0.1. As is almost seen in Figure 5(E), for the case 
where fSU = 0.2, the fraction of vaccinated individuals across the full range of degrees 
largely declines, due to the presence of SUs – even though SVs are present in the 
population. As mentioned, no-vaccination behaviour among hubs brings about a large 
reduction in vaccination coverage – and, consequently, great disease propagation when 
they are selected as SUs. Therefore, the adverse effect of the presence of SUs outpaces 
the favourable effect of SVs, particularly for the range where Cr is small. 
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Figure 5 Vaccination coverage (A and C) and final epidemic size (B and D) as functions of  
the relative cost of vaccination Cr for different fractions of SUs (fSU) when the fraction 
of SVs (fSV) equals 0 (A and B) and 0.1 (C and D); and the fraction of vaccinated 
individuals as a function of the number of neighbours when Cr = 0.2 (E and F) in the 
BA-SF network 

 

Figure 6 Contour diagrams of vaccination coverage (upper six panels) and final epidemic size 
(lower six panels) as functions of the fraction of SVs (fSV) and of SUs (fSU) when Cr = 0 
(A and B), 0.1 (C and D), 0.5 (E and F), 0.8 (G and H), 0.9 (I and J), and 1 (K and L) in 
the BA-SF network 
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Figure 7 Contour diagrams of differences in vaccination coverage (upper six panels) and final 
epidemic size (lower six panels) between the case at origin and the others when Cr = 0 
(A and B), 0.1 (C and D), 0.5 (E and F), 0.8 (G and H), 0.9 (I and J), and 1 (K and L) in 
the BA-SF network 

 

4 Conclusions 

In this study, we investigated how the presence of stubborn vaccinated or unvaccinated 
individuals who are intransigent about their own vaccination strategy can affects other 
individuals’ decision-making vis-à-vis whether or not to get a vaccination themselves, as 
well as the spread of flu-like infectious disease. Consequently, we found that the 
influence of the presence of both types of stubborn individuals greatly depends on their 
proportion within the population, as well as the population structure and the relative cost 
of vaccination Cr. 

Lattice populations can greatly prevent disease propagation by distributing SVs 
evenly across the population at a wider range of Cr, even though the fraction of SUs is 
greater than that of SVs. In contrast, for the BA-SF network, disease propagation cannot 
be prevented, since the hub individuals may be selected as SUs when the Cr has a  
lower-than-moderate value – even when the SVs are present in the population. Based on 
our results, it is suggested that we pay attention not only to the regional network 
structures and the cost of vaccination, but also to the presence of SUs when we examine 
intervenient methods by which to prevent disease propagation. 

In our simulations, we assumed that individuals are situated within a social network 
in the midst of a flu-like disease. However, the epidemic parameters – such as the 
transmission rate, β – have a profound effect on disease propagation (Keeling and Eames, 
2005). Besides, for simplicity, we assumed that individuals acquire perfect immunity 
from taking a vaccine against a seasonal infectious disease during an epidemic  
season – that is, vaccinated individuals definitely will not become infected during the 
epidemic season. In reality, however, for some infectious diseases the immunisation 
efficacy and effectiveness of a vaccine are not always perfect (Hoffman, 1996; Sudfeld  
et al., 2010). In future work, we must investigate the impact of the presence of stubborn 
individuals under various epidemic-parameter conditions; additionally, vaccination 
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efficacy and effectiveness must be considered, and doing so would allow us to make 
more realistic proposals for preventing epidemics. 
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Supplementary material 

Disease propagation in social networks 

Figure 8 shows disease propagation in lattice populations and the Barabási-Albert  
scale-free (BA-SF) network, obtained through computational simulation. Each plotted 
point represents an average over 100 runs. As can be seen in this figure, for lattice 
populations, in the case of low β values, disease propagation is significantly inhibited by 
the local spatial clustering effect (Fu et al., 2011). On the other hand, unlike with lattice 
populations, a BA-SF network has a very sensitive β, and infectious diseases can  
easily spread due to the presence of degree heterogeneity (Keeling and Eames, 2005; 
Pastor-Satorras and Vespignani, 2001). 

Figure 8 Final epidemic sizes as a function of disease transmission rate β, when no individuals 
are vaccinated in each network 

 


