Finite element simulation of intra-carpal tunnel pressure: the effects of individual finger flexion and histological changes
by Kyrin Liong; Amitabha Lahiri; Shujin Lee; Dawn Chia; Arijit Biswas; Heow Pueh Lee
International Journal of Experimental and Computational Biomechanics (IJECB), Vol. 3, No. 3, 2015

Abstract: Carpal tunnel syndrome (CTS) is a common neuropathy, yet its etiology is unknown. While repetitive finger flexion and interstitial subsynovial connective tissue (SSCT) thickening are commonly associated with idiopathic CTS development, the stress that the nerve experiences remain unexamined. In this study, a patient-specific computational model of the carpal tunnel was developed. Tendon displacements corresponding to thumb, index finger (IF) and middle finger (MF) flexion were prescribed. To replicate a CTS candidate, the most common physiological finding - fibrosis of the SSCT - was modelled. Heightened nerve coefficients were also prescribed to simulate nerve stiffening. This revealed that volarly-moving tendons, as in IF and thumb flexion, elicit greater nerve stresses than those dorsally-moving tendons, as in MF flexion. The stress encountered in CTS candidates significantly exceeded those in normal candidates, demonstrating that tendon path, and the in-vivo conditions of an individual's SSCT and median nerve stiffness predominantly affect nerve stress.

Online publication date: Wed, 30-Dec-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Experimental and Computational Biomechanics (IJECB):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com