Application model of surface removal contour to blade abrasive belt grinding
by Yun Huang; Yajie Wang; Haining Li; Yaxiong Chen; Zhongsheng Yang
International Journal of Abrasive Technology (IJAT), Vol. 7, No. 2, 2015

Abstract: In order to improve dimensional accuracy of aero-engine blade edges, surface removal contour (SRC) model is applied to the engine blade grinding in this study. Firstly, according to variable curvature of characteristics the engine blades, this paper adopts the semi-Hertz contact theory to simulate grinding contact state. Secondly, surface removal contour model was deduced from the material removal rate (MRR) nonlinear model, and the model of the final grinding depth is proposed, and the model consider the influence of path interval. Thirdly, for determining the parameters of MRR nonlinear and linear model, abrasive belt grinding experiment is carried out, which shows the relative error of MRR nonlinear model to be -1.1↓~1.4↓. The application of abrasive belt grinding on the blade showed the maximum error of the processing is within 0.05 mm and the abrasive belt grinding process system is stable.

Online publication date: Tue, 22-Dec-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Abrasive Technology (IJAT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com