Finite element modelling of orthogonal machining of hard to machine materials
by Ajith Ramesh; C.S. Sumesh; P.M. Abhilash; S. Rakesh
International Journal of Machining and Machinability of Materials (IJMMM), Vol. 17, No. 6, 2015

Abstract: This paper presents a detailed finite element model to predict deformation and other machining characteristics involved in high-speed orthogonal machining (cutting speed > 54 m/min) of hard-to-deform materials like Ti6Al4V. The influence of various cutting parameters like feed rate, spindle speed, and rake angle, on the output parameters like cutting force and surface finish, was analysed. The paper tries to relate the degree of surface finish with the variance of the effective plastic strain. The Johnson-Cook material model is used to describe the material constitutive behaviour, and the Johnson-Cook damage model is used to establish the damage criteria. Due to the high machining costs associated with the titanium alloy, the model is first validated using aluminium alloy (Al2024-T351), and the same model is then extended to predict the results for titanium alloy. The matrix for the design of experiments (DOE) considers a full factorial approach, with about 48 simulations, for a proper understanding on the influence of the major machining parameters. A dynamic, explicit integration scheme is used along with the arbitrary Lagrangian-Eulerian (ALE) technique to accurately predict material flow. This paper also presents a unique method to tackle the commonly encountered numerical issues involved in modelling self-contact.

Online publication date: Wed, 16-Dec-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Machining and Machinability of Materials (IJMMM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com