Performance investigation of a diffusion absorption refrigeration system using nano-size alumina particles in the refrigerant
by Adnan Sözen; Engin Özbaş; Tayfun Menlik; Ümit İskender; Cuma Kılınç; M. Tarık Çakır
International Journal of Exergy (IJEX), Vol. 18, No. 4, 2015

Abstract: In this study, the effects of the passive heat transfer improvement method of coupling ammonia/water with nano-size alumina (Al2O3) particles were examined in regard to the heat performance of a diffusion absorption refrigeration system (DARS). Adding nanoparticles into the fluid leads to significant improvement in heat transfer since the surface area and heat capacity of the fluid increase due to the high surface area of the nanoparticles. In this study, cooling/absorption fluid mixtures with Al2O3 nanoparticles and their impact on system energy and exergy performance were assessed. The results of experiments indicated that the system with nanoparticles provided better absorption of heat from the generator and faster evaporation of the cooler from the cooling/absorption fluid. Addition of alumina nanoparticles to DARS improved the system's coefficient of performance (COP) and exergetic coefficient of performance (ECOP) by 55.56% and 22.8%, respectively, and reduced the circulation ratio (f) by 51.72%.

Online publication date: Sat, 07-Nov-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Exergy (IJEX):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com