Aggregation algorithms for k-cycle AMG in computational fluid dynamics
by Maximilian Emans
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 15, No. 6, 2015

Abstract: We present a systematic comparison of different aggregation schemes for AMG-based solvers in computational fluid dynamics. Our focus lies on the method of the Krylov-accelerated cycle which has very favourable properties for the applications on 3D unstructured meshed. While on conventional CPUs the k-cycle AMG in its known form with double-pairwise aggregation is shown to be approximately as fast as plain aggregation schemes (and therefore recommendable), the algorithm with plain aggregation becomes significantly more efficient on GPUs since the setup of this aggregation scheme is much leaner. Furthermore, we show that the solution phase of k-cycle AMG has excellent scaling properties on modern cluster hardware with up to 256 cores. However, common coarse-grid treatment techniques such as parallel direct solvers or agglomeration schemes form a bottleneck such that the scaling of the setup phase is considerably worse. Block-iterative methods improve the performance here.

Online publication date: Tue, 03-Nov-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com