FPGA implementation of linear model predictive controller for real-time position control of DC motor
by Dayaram Sonawane; Deepak Ingole; Vihangkumar Naik
International Journal of Circuits and Architecture Design (IJCAD), Vol. 1, No. 4, 2015

Abstract: Model predictive control (MPC) is a predictive class of control algorithm which has been widely adopted for slow dynamic, constrained, multi-variable process control problems. The applicability of MPC for real-time control is restricted due to the associated computational complexity of quadratic programming (QP) problem and the choice of appropriate computing platforms. MPC can be formulated as a standard QP problem and according to receding horizon control strategy, in order to get optimal control signal to apply to the system, in each discrete time step, a QP problem is to be solved online. In order to meet high sampling frequency demand of real-time control applications, in this paper, we propose a novel accelerated field programmable gate array (FPGA)-based customised architecture for active set method (ASM)-based QP solver to implement linear MPC. The approach is implemented successfully on Xilinx's Virtex-4 FPGA and demonstrated practically by applying MPC to Quansers QET DC servomotor position control plant. From experimentation; it is observed that, FPGA-based implementation occupies 35% of Virtex-4 area and achieves 500 µs sample time.

Online publication date: Thu, 22-Oct-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Circuits and Architecture Design (IJCAD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com