MARAGAP: a modular approach to reference assisted genome assembly pipeline
by Bilal Wajid; Erchin Serpedin; Mohamed Nounou; Hazem Nounou
International Journal of Computational Biology and Drug Design (IJCBDD), Vol. 8, No. 3, 2015

Abstract: This paper presents MARAGAP, a modular approach to reference assisted genome assembly pipeline. MARAGAP uses the principle of Minimum Description Length to determine the optimal reference sequence for the assembly. The optimal reference sequence is used as a template to infer inversions, insertions, deletions and SNPs in the target genome. MARAGAP uses an algorithmic approach to detect and correct inversions and deletions, a De-Bruijn graph based approach to infer the insertions, an affine-match affine-gap local alignment tool to estimate the locations of insertions and a Bayesian estimation framework for detecting SNPs.

Online publication date: Wed, 30-Sep-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computational Biology and Drug Design (IJCBDD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com