Physics of unconventional shale gas reservoirs for a long-term production perspective
by Mohammad O. Eshkalak; Umut Aybar; Kamy Sepehrnoori
International Journal of Oil, Gas and Coal Technology (IJOGCT), Vol. 10, No. 1, 2015

Abstract: A simple unconventional reservoir model is developed that accounts for complex physics affecting production from hydraulically-fractured wells in shale resources. Integrating these physics and evaluating their order of importance on future production of an unconventional reservoir is very essential. The proposed model divides the formation into three zones, rock matrix (I), induced-fracture (II) and hydraulic fracture (III) that hold varying characteristics. Also, a history matching process with Marcellus shale field production data is performed in order to obtain the most uncertain parameters defined in the model. Results showed that combined effect of permeability losses of hydraulic and induced-fracture zones results in 15% gas production drop in 30 years. It is also concluded that the minimum ingredients required for long-term production forecast of unconventional shale gas reservoirs are considering two physics; shale surface methane desorption along with pressure-dependent permeability for fracture network and other physical phenomena are inconsequential. [Received: August 12, 2014; Accepted: December 13, 2014]

Online publication date: Fri, 26-Jun-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Oil, Gas and Coal Technology (IJOGCT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com