Adaptive backstepping control using combined direct and indirect adaptation for a single-link flexible-joint robot
by Yassine Soukkou; Salim Labiod
International Journal of Industrial Electronics and Drives (IJIED), Vol. 2, No. 1, 2015

Abstract: In this paper, a new tuning functions-based adaptive backstepping controller using combined direct and indirect adaptation for a single-link flexible-joint robot is presented. In this approach, the parameter estimation is driven by a weighted combination of tracking and identification errors. At first, the x-swapping filter identifier with a gradient-type update law is presented for a class of parametric strict-feedback nonlinear systems. Then, the main steps of the controller design for a single-link flexible-joint robot manipulator model are described. The closed-loop error dynamics is shown to be globally stable by using the Lyapunov stability approach. Finally, simulation results are given to illustrate the tracking performance of a single-link flexible-joint robot manipulator with the proposed adaptive control scheme.

Online publication date: Sun, 12-Apr-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Industrial Electronics and Drives (IJIED):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com