Optimisation of process parameters and residual stress analysis of transmission laser microjoining of glass and silicon
by Mohammed S. Mayeed; Golam M. Newaz
International Journal of Materials and Product Technology (IJMPT), Vol. 50, No. 2, 2015

Abstract: A three-dimensional transient simulation for thermal and thermal stress analysis of transmission laser microjoining of dissimilar materials is performed. The laser beam moving at a velocity passes through the transparent glass (Gl), gets absorbed by the absorbing silicon (Si), and eventually softens/melts the Gl to form the bond. A good comparison is observed between the computational and experimental bond widths. Through computational optimisation of process parameters, it is observed that at a laser velocity of 30 mm/min with an initial dwell time of about four seconds good bonding was obtained with increasing bond widths. Acceleration is added which results in a uniform bond width. Subsequently, room temperature residual stress profiles of the microjoint are calculated. Stress profiles on both the Gl and Si surfaces show similar trend. At room temperature both the surfaces show low stresses which do not cross the tensile or the compressive strengths of the respective materials.

Online publication date: Thu, 05-Mar-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Materials and Product Technology (IJMPT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com