Multicomponent surfactant mass transfer in GTA-welding
by C. Winkler, G. Amberg
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 5, No. 3/4/5, 2005

Abstract: A mathematical model simulating multicomponent, surfactant mass transfer in the liquid region arising in the specimen directly beneath the electrode during GTA-welding is developed. The sorption controlled surfactant mass transfer is due to convection and diffusion in the surface and bulk liquid regions. Interaction coefficients and multicomponent Langmuir adsorption isotherms are used to consider the interaction between the several surfactants involved. The model is added to a mathematical formulation that is often used for GTA-welding, and is finally used to calculate the fluid and heat flow and surfactant distributions in the weld pool. In the simulations, GTA-welding on stainless steel plates for a ternary Fe-S-O system is considered for varying surfactant concentrations and for varying heat input conditions. A very good agreement between numerically obtained and corresponding experimental weld pool shapes is found. Thus, it is shown that previous shortcomings in modelling of GTA-welding can be overcome if multicomponent surfactant mass transfer is considered.

Online publication date: Tue, 05-Apr-2005

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com