

 118 Int. J. Software Engineering, Technology and Applications, Vol. 1, No. 1, 2015

 Copyright © 2015 Inderscience Enterprises Ltd.

Dynamic inheritance coupling metric-design and
analysis for assessing reusability

Neha Gehlot and Jagdeep Kaur*
CSE Department,
ITM University,
Gurgaon, Haryana, India
Email: neha12sep009@itmindia.edu
Email: jagdeep@itmindia.edu
*Corresponding author

Abstract: Moving along the different phases of software development life
cycle measuring the quality of software has always been a challenging task but
is considered immensely useful. The area of software metrics, especially
pertaining to object-oriented software system, has expertise in describing the
characteristics of a software system for the past few decades. Software metrics
numerically extract relationships among given components in a software
system and relate those measurements to the system’s quality. Thus, software
metrics predict the current level of software quality and in turn initiate a
feedback process that may lead to further improvement of a software system.
But the actual behaviour of the software can only be measured from
information collected at runtime. Thus, there is a need of evolving such
software metrics that are based on the runtime analysis of a software system.
These metrics are known as dynamic metrics. In this paper, new dynamic
coupling and inheritance metrics for object-oriented systems is designed and
validated on a metric tool developed in Java measuring inheritance coupling,
complexity, class independent factor and relating the calculated measures to a
software quality attribute-reusability which is useful in software quality
assessment.

Keywords: metrics; quality attribute; inheritance; coupling; reusability.

Reference to this paper should be made as follows: Gehlot, N. and Kaur, J.
(2015) ‘Dynamic inheritance coupling metric-design and analysis for assessing
reusability’, Int. J. Software Engineering, Technology and Applications,
Vol. 1, No. 1, pp.118–133.

Biographical notes: Neha Gehlot completed her MTech in Software
Engineering in 2014 from ITM University, India. She completed her BTech in
Computer Science and Engineering from Maharishi Dyanand University,
Rohtak, India in 2012.

Jagdeep Kaur is an Assistant Professor in CSE Department at ITM University,
India. She is pursuing her PhD from Gautam Bhuddha University, Greater
Noida, India in Software Engineering (2012). She completed her MTech in
CSE from Punjabi University, Patiala, India in 2005 and BTech in CSE from
Punjab Technical University, Jalandhar, India in 2003.

 Dynamic inheritance coupling metric-design and analysis 119

1 Introduction

In order to enhance the quality of software system metrics are considered as one of the
most important tools used in software engineering. They are concerned with
measurement in software engineering. Software metrics can be defined as means to
supply meaningful and timely management information, together with the use of
measurement-based techniques to improve process and its products in software
development. The software metric concept in which measurement-based techniques are
applied to processes, products and services to supply useful engineering information
metrics (Briand et al., 1999).

Many object-oriented software metrics have evolved over the years. Most of these
metrics extract useful information from a static software code. The related information
can be number of lines of code, number of classes in the code, coupling among classes,
etc. Such an analysis of static code is called static analysis of software code and the
metrics that carry out such analysis are called static metrics. But the actual behaviour of
the software can only be measured from information collected at runtime. Thus, there is a
need of evolving such software metrics that are based on the runtime analysis of a
software system. These metrics are known as dynamic metrics.

Many quality attributes are available like complexity, coupling, reusability and many
metrics are also present to measure them (Arisholm et al., 2004). To calculate the degree
of dependency between the classes or modules in a system coupling is an internal quality
attribute which is to be calculated. Coupling is divided into three categories parameter
coupling, global coupling and Inheritance coupling. There are no dynamic metrics
available till date that can study the impact of inheritance on coupling. The study of any
correlation existing between coupling and inheritance also needs to be studied. Coupling
and inheritance are two key design attributes of object-oriented software systems that
help predict external attributes of software quality.

Dynamic measures related to inheritance coupling are ambiguous for, e.g., type of
coupling is an aspect in which cases which constitutes to a coupling are clearly not
defined (Bidve and Khare, 2012). There is no clear picture of how to use inheritance in
coupling. Every author has different idea regarding inherence for coupling measurement
(Bidve and Khare, 2012).

2 Coupling metrics

To measure external complexity of a software design coupling is well recognised as one
of the fundamental measure of quality. Coupling metric measure in turn characterises
such external quality attributes of a design as its maintainability, reusability, reliability,
and provides a way to estimate testing efforts (Bidve and Khare, 2012). The majority of
coupling metric are evaluated through static code analysis but other dependencies
regarding the dynamic behaviour of a program can only be inferred from run-time
information. So, dynamic coupling metric came into picture. Features of object-oriented
programming such as polymorphism, dynamic binding and inheritance render the static
coupling metrics and were imprecise as they do not reflect perfectly the run-time
situation.

 120 N. Gehlot and J. Kaur

Moreover, static coupling metrics attempt to predict the potential interactions that
would take place at run-time, whereas dynamic coupling metrics measure what is actually
happening at runtime rather than predicting.

Furthermore, with ever increasing use of object-oriented software in industry, it has
been observed that inheritance and polymorphism are used more frequently to improve
internal reuse in a system and facilitate maintenance.

The actual target of polymorphic method invocations can only be determined at run-
time as per the inherited members of the class. Thus, it is not feasible to obtain precise
static measures, which take inheritance and polymorphism into account (Gupta, 2011).

2.1 Coupling level

Coupling is defined as the degree of association between class through the use of
methods or attributes defined in a class that are used by another class (Chawla and Nath,
2013). Classes interact with other classes to form a subsystem/system and this interaction
can indicate the complexity of the design. Representative metrics at different coupling
levels which are used are discussed below (Bidve and Khare, 2012):

2.1.1 Object level

Object level coupling between classes can be calculated how objects are associated and
contributing in the complexity factor. Objects are instance of classes which helps classes
to communicate with each other thus increasing dependency among them.

1 Coupling between objects (CBO) (Chidamber and Kemerer, 1994)

CBO is indented to give an indication of the effort needed for maintenance and
testing and defined as a count of the number of other classes to which it is coupled.
Coupling between two classes is said to occur when one class uses methods or
variables of another class. CBO considers the number of distinct non-inheritance
related class hierarchies on which a class depends.

2.1.2 Class level

These metrics identify the highlighting aspects of the class abstractions and help identify
where remedial action may be taken to remove abstraction. Representative metrics of this
level are:

1 Response for a class (RFC) (Chidamber and Kemerer, 1994)

According to C&K, RFC is a measure of the coupling of a class through the number
of methods and the amount of communication with other classes as RFC is an
indicator of the effort of testing and debugging. Methods that can be invoked in
response to a message to an object of the class or by some method in the class are
counted to give RFC measure. All methods accessible within the class hierarchy are
included

2 Weighted methods per class (WMC) (Chidamber and Kemerer, 1994)

If all methods are considered equally complex, then WMC is simply the number of
methods defined in each class. WMC measures the complexity of an individual class.

 Dynamic inheritance coupling metric-design and analysis 121

C&K suggests that WMC is intended to measure how complex is the class with
count of number of methods and it is an indicator of the effort needed to develop and
maintain a class.

3 Inheritance metrics

Inheritance relationship is viewed as a trade-off between classes. Inheritance enhances
association between the two class thus can be considered as a major contributor to
calculate the coupling between the classes. Three aspects need to be considered with
respect to inheritance (Chawla and Nath, 2013):

Is there a need to distinguish between inheritance-based coupling and
non-inheritance-based coupling?

How do we assign methods and attributes to classes?
For method invocations: shall we consider static or polymorphic invocations.
The representative metrics of this level are:

1 Depth of inheritance tree (DIT) (Chidamber and Kemerer, 1994)

DIT measures the maximum level of the inheritance hierarchy of a class; the root of
the inheritance tree inherits from no class and direct count of the levels of the levels
in an inheritance hierarchy. According to C&K, DIT is intended to measure the class
complexity, design complexity and the potential reuse because the deeper is a class,
the greater number of methods is likely to inherit.

2 Number of children (NOC) (Chidamber and Kemerer, 1994)

NOC is the number of immediate subclasses to a class in the hierarchy and thus
counts the number of subclasses belonging to a class. It is an indicator of the
potential influence a class can have on the design of the system. If the design has a
high dependence on reuse through inheritance, and may be better to split off
functionality into several classes.

3 Number of inherited methods (Abreu and Melo, 1996)

NIM is a measure showing the reusable behaviour of a class. It counts the number of
methods which a class can access in its super classes. Scope of this metric is a class.
The larger the number of inherited methods is, the larger class reuse happens through
sub classing. Thus it shows how much internal reuse happens between a class and its
super classes based on invocations.

4 Method inheritance factor (MIF) (Abreu and Melo, 1996)

MIF is defined as the ratio of the sum of the inherited methods in all classes of the
system under consideration to the total number of available methods for all classes.
MIF measure directly the number of inherited methods as a proportion of the total
number of methods. Abreu proposes that MIF is a measure of inheritance, and
consequently as a means of measure the level of reuse thus gives assessment of
testing needed.

 122 N. Gehlot and J. Kaur

5 Attribute inheritance factor (AIF) (Abreu and Melo, 1996)

AIF is defined as the ratio of the sum of inherited attributes in all classes of the
system under consideration to the total number of available attributes. It is defined in
an analogous fashion to MIF. AIF measure directly the number of inherited attributes
as a proportion of the total number of attributes. Too much reuse trough inheritance
makes worst the understandabilty and testability.

6 Polymorphism factor (PF) (Abreu and Melo, 1996)

PF is defined as the ratio of the actual number of possible different polymorphic
situation for class Ci to the maximum number of possible distinct polymorphic
situations for class Ci. Thus, giving a measure of polymorphism potential. PF is the
number of methods that redefine inherited methods, divided by the maximum
number of possible distinct polymorphic situations. Polymorphism arises from
inheritance. Overriding methods can reduce complexity, thus increasing
maintenance. It is an indirect measure of the dynamic binding in a system.

4 Complexity metric

Halstead complexity metrics quantitative measured the complexity directly from the
operators and operands in the module to measure a program module’s complexity directly
from source code. Among the earliest software metric, they are strong indicators of code
complexity. Because they are applied to code, they are most often used as maintenance
metric. Because maintainability should be a concern during development, the Halstead
measures should be considered for use during code development to follow complexity
trends they are one of the oldest measures of program complexity (Suri and Garg, 2009).

Halstead metrics is based on interpreting the source code as a sequence of tokens and
classifying each token to be an operator or an operand, counting:

1 Number of unique (distinct) operators (n1) number of unique (distinct) operands (n2)

2 Total number of operators (N1) total number of operands (N2).

3 The number of unique operators and operands (n1 and n2) as well as the total
number of operators and operands (N1 and N2) are calculated by collecting the
frequencies of each operator and operand token of the source program.

a Program length (N)

The program length (N) is the sum of the total number of operators and operands
in the program:

N N1 N2= +

b Vocabulary size (n)

The vocabulary size (n) is the sum of the number of unique operators and
operands

n n1 n2= +

 Dynamic inheritance coupling metric-design and analysis 123

c Volume (V)
• Program volume(V)

The program volume (V) is the information contents of the program,
measured in mathematical bits. It is calculated as the program length times
the two-base logarithm of the vocabulary size (n):

V N *log 2(n)=

• Halstead’s volume (V)
Describes the size of the implementation of an algorithm. The computation of
V is based on the number of operations performed and operands handled in
the algorithm. Therefore, V is less sensitive to code layout than the
lines-of-code measures.

d Difficulty level (D)
The difficulty level or error proneness (D) of the program is proportional to the
number of unique operators in the program. D is also proportional to the ration
between the total number of operands and the number of unique operands (i.e., if
the same operands are used many times in the program, it is more prone to
errors).

() ()D n1/ 2 * N2 / n2=

5 Proposed work

The proposed metric formula gives the coupling measure of a system due to methods that
are inherited at runtime and the degree of association between them. With the help of this
coupling value the measure of reuse can estimated as a low coupling value will give a
more useable code, and thus by verifying values you can improve upon the code.

5.1 Proposed metric

5.1.1 Dynamic method inheritance coupling metric

()micf i jDC c ,c Method inheritance coupling factor *coupling factor=

() ()
S

R
micf i j mi i j

K 1

DC c ,c r c ,c *cf
=

=∑

where
R

mi i jr (c ,c) ovm orefm / T= +∑

2
i jcf (c ,c 1) / C C,= = −

• cf is coupling factor

• ovm is the total number of overrided method and orefm is the total number of
methods called through object reference

 124 N. Gehlot and J. Kaur

• S is the total number of methods invoked.

• T is the total number of methods

• (ci, cj = val) if ci is associated with cj, C is the no. of classes.

Relation rmi R(ci, cj) is the number of inherited methods invoked and implemented in
classes ci and cj through parameter called and overriding contributing to coupling.

s is the total number of invocation relations taking place between these classes at
run-time.

The formula will give the total method inheritance coupling by calculating the
method inheritance coupling factor which is calculated as summation of inherited
methods/total methods. The inherited methods are calculated by two ways firstly by
calculating the number of overridden methods contributing in inheritance coupling and
secondly by calculating the method called by the reference objects contributing in
parameter coupling. The coupling due to inheritance takes into consideration the number
of interfaces implemented and classes extended each incrementing the measure by 1 for,
e.g., class A extends B implements C, D, E. Coupling calculated would be 4.

5.1.2 Class reusability metric

Reusability metric will give the measure of the reusability in the Java class. Reusability is
a software quality attribute calculated to improve software quality of the software system.
Reuse is achieved by establishing various relationships among classes such as inheritance
or composition. Features of class such as high generality level (i.e., less application
specificity) and less coupling increases its reusability. Introducing reusability features in
the classes must be the goal of inheritance hierarchy at design time.

Our approach is to derive formula to measure reusability of a class is based on
following principles:

Inheritance is a direct indicator of reuse. The number of methods inherited
(overridden, object reference) in a class will indicate the reusability of class due to
inheritance. It indicates the measure of reusability in a class.

Applying least square regression analysis to calculate a and k

x (ovm Orefm)= +

z a k * x= +

Reusability metric z / T=

a z k * x= −

Using empirical constant k the raw metrics values are empirically adjusted for calculation
in order to map the metrics values into a scale from 0.0 to 1.00 (0 ± 100%).

X addition of ovm is the total number of overrided method and orefm is the total
number of methods called through object reference

T is the total number of methods.

 Dynamic inheritance coupling metric-design and analysis 125

5.1.3 Inheritance coupling

A more independent a class it is easier to be reused by another application. To improve
modularity and encapsulation the inter object class coupling measures should be
minimum. As the number of couples becomes larger the maintenance is more difficult.
By using more interfaces compared to inheritance the coupling measures are reduced.

Also, whenever one object interacts with another object, that is a coupling. Strong
coupling means that one object is strongly coupled with the implementation details of
another object. Strong coupling is discouraged because it results in less flexible, less
scalable application software.

Thus, for my the proposed inheritance coupling measure in the tool ,the count of the
coupling due to inheritance is calculated by assigning values on the basis of type of
inheritance occurring between classes, i.e., value 1 has been assigned to the class with
‘implementing interfaces’ as it will contribute to least coupling, value 2 has been
assigned to class using ‘extend’ keyword and value 3 has been assigned to the classes
coupled through object calling which will contribute to highest coupling. And if class
extends and implements a number the coupling value will result into 3. Thus, a low
coupling measure will indicate that class can be reused and degree of inheritance is low.
Table 1 coupling measure

Type of
inheritance

Coupling value
assigned Coupling range Coupling type

Interface 1 1–10 Low
Extends 2 11–50 Moderate
Object calling 3 > 50 High

5.1.4 Class independent factor

The inheritance coupling for a Java project will give the measure of the amount of
coupling , which exists in a class due to inheritance.

And as coupling and independency are inversely related as a class with high coupling
measure will be less independent thus will be not easy to reuse. We have calculated an IF
using the inheritance coupling measure given by the formula:

Independent factor (class) 1/ Inheritance coupling=

This factor will measure how much the class is independent.
Table 2 Independent factor measures

Value Independent factor

FI Fully independent
< 0.5 Less independent
> 0.5 Highly independent

5.1.5 Complexity

Tool contains metric factor option which contains complexity and coupling as the factors,
any of them can be chosen and calculated for a chosen Java file. The complexity is

 126 N. Gehlot and J. Kaur

measured based in the Halstead volume concept Halstead’s measure derived from the
unique and total number of operands and operators. In this tool program length measure
of the Halstead metric has been considered and complexity is calculated based on the
number of operands (identifiers and constants) and operators (traditional and keywords)

 ‘if’, ‘else’, ‘while’, ‘case’, ‘for’, ‘switch’, ‘do’,
 ‘continue’, ‘break’, ‘&&’, ‘||’, ‘?’, ‘:’, ‘catch’,
 ‘finally’, ‘throw’, ‘throws’, ‘default’, ‘return’,
 ‘break;’

Any of the above mentioned operators and operands present in the code will be calculated
to give a measure of complexity of the code. The complexity measure in the tool will
basically gives the count of number of loops, few keywords that are basically used and
making the code complex. By identifying a value the code with high value that will be
identified as a highly complex code can be revised and thus efficiency can be improved.
Table 3 Measuring complexity

Complexity level Risk
1–10 A simple program, without much risk
11–20 More complex, moderate risk
21–50 Highly complex, moderate risk
> 50 Most complex, very high risk

6 Implementation

Implementation is the stage of the project when the theoretical design is turned out into a
working system. Thus, it can be considered to be the most critical stage in achieving a
successful new system and in giving the user, confidence that the new system will work
and be effective. In this, we develop a tool in Java which explains as follows:

Metric Tool is a software tool developed in Java which takes Java code as input and
measures dynamic method inheritance coupling metric, class reusability metric,
inheritance coupling and complexity. In this tool, we create three steps in menu bar as
shown in Figure 1 the steps are: file, metric factor, apply formula (Figure 1).

The working simulation result of the following Metric Tool is in details shown step
by step.

1 The file menu in the tool can open a file, create a new file and save a file and help
you exit the tool.

2 The Metric Factor menu in the tool will help you choose any of the two factors, i.e.,
complexity and coupling. Selecting any of them you can calculate a value for both
separately for the chosen Java file.

3 The Apply Formula menu will calculate the metric value of the dynamic inheritance
method metric and the reusability metric and independent factor.

 Dynamic inheritance coupling metric-design and analysis 127

Figure 1 Metric Tool (see online version for colours)

Figure 2 Tool calculating proposed metric (see online version for colours)

 128 N. Gehlot and J. Kaur

Figure 3 Tool measuring independent factor (see online version for colours)

Figure 4 Tool measuring reusability metric (see online version for colours)

 Dynamic inheritance coupling metric-design and analysis 129

Figure 5 Tool measuring complexity (see online version for colours)

7 Result and analysis

7.1 Test cases

A number of Java projects has been used as test cases for evaluating the proposed metric,
i.e., dynamic inheritance method coupling and metric tool which calculates complexity,
inheritance coupling, and reusability metric. Total 30 Java projects with varying LOCs
have been used, i.e., from simple Java projects to complex Java projects. Test cases
chosen are standard Java codes with LOC from 6 to 5,000 has been tested. Test cases are
mentioned with their classes in Table 3.

7.2 Test case analysis

Measure of reusability metric is also calculated and is related to amount of inheritance
measure. The analysis shows measure of reusability in the code.

Measure of the proposed metric that is dynamic inheritance coupling metric is
calculated for several test cases and presented. It is observed as the code in project
increases the value of the metric increases to very high values due to presence of high
degree of inheritance and high coupling within the code.

Table 1 shows the range values for the coupling due to inheritance defined by the
tool.

Table 2 shows the range of class independent factor.
Table 3 shows the complexity range values defined in the tool.

 130 N. Gehlot and J. Kaur

7.3 Results

The complexity measure calculated here is based on Halstead volume concept and has
taken program length as the factor to calculate the complexity due to presence of several
operators and keywords. Results are shown in Table 4.

The reusability metric is defined as an inheritance measure and the results would
show that the measure of existing reusability in a class and the class independent factor is
calculated based on inheritance coupling measured in a class thus the factor calculated
will give a measure that how much a class is independent allowing developers to select
appropriate classes for reuse.

Results on several test cases are shown in Table 5. The dynamic inheritance method
coupling metric calculates the coupling measure of inherited methods taking into
consideration the overridden methods as well, which are not taken into earlier such
proposed metrics and coupling factor which also includes coupling due to inheritance into
its calculation. The coupling factor proposed earlier did not consider associations due to
inheritance. Thus, code with less metric value is more reusable. Results of metric on
several test cases are shown in Table 5.
Table 4 Table measuring complexity and coupling

Project Class Complexity Inheritance coupling

String justify app Stringjustify.java 24 0

Stringjusttest.java 1 6

Show quality Average.java 24 3

Averagetest.java 1 3

Turtle graphics Turtle.java 52 3

Turtletest.java 1 3

Pythagorean table Pythagorean.java 3 0

Pythagore-antest.java 1 6

Population growth Popula-tiongrowth.java 3 12

Popula-tiongrwothtest.java 3 6

Knight tour Knightour.java 12 6

Knightourtest.java 1 6

Tic Tac Toe Tictactoe.java 12 6

Tictactoe test.java 1 6

Code Signin.java 10 5

Signup.java 7 5

Testrun.java 2 0

Uploadfile.java 7 5

Uploadnew-file.java 9 5

App Beeper.java 2 27

Online examination Sample.java 12 30

 Dynamic inheritance coupling metric-design and analysis 131

Table 5 Table measuring metrics

Project Class Independent
factor

Reusability
metric

Proposed
metric

String justify app String justify.java FI 0 2
Stringjust-test.java 0.16 33.3

Show quality Average.java 0.33 5.5 1
Averagetest.java 0.33 25

Turtle graphics Turtle.java 0.33 2.2 2
Turtletest.java 0.33 33.3

Pythagorean table Pythagorean.java FI 0 1
Pythagoreantest.java 0.16 25

Population growth Populationgrowth.java 0.08 0 6
Populationgrwothtest.java 0.16 33.33

Knight tour toe Knightour.java 0.16 4.5 8
Knightourtest.java 0.16 37.5

Tic Tac Toe Tictactoe.java 0.16 4.1 4
Tictactoetest.java 0.33 33.3

Code Signin.java 0.20 0 0.8
Signup.java 0.20 0
Testrun.java 0.20 0

Uploadfile.java 0.20 30

App Uploadnewfile.java 0.20 30 84
Beeper.java 0.03 42.2

Online examination Sample.java 0.33 48.4 infi

8 Conclusions

This paper gives a new dynamic method inheritance coupling metric that is implemented
on a Metric Tool developed in Java. Also, the metric tool developed measures complexity
which is based on Halstead volume concept, inheritance coupling measure, class
independent factor and a reusability metric.

The complexity measure calculated here is based on Halstead volume concept and has
taken program length as the factor to calculate the complexity. Thus, the code with less
complexity will be comparatively easy to understand and thus used.

The reusability metric is defined as an inheritance measure and the results would
show that the measure of existing reusability in a class. Due to the calculation of
reusability metric the stability of the class structure can be calculated in future. The class
independent factor will allow developers to choose appropriate classes for reuse.

The dynamic inheritance method coupling metric calculates the coupling measure due
to inherited methods, also overridden methods, which are not taken into earlier such
proposed metrics and coupling factor which also includes coupling due to inheritance into
its calculation. Thus, code with less metric value is more reusable.

 132 N. Gehlot and J. Kaur

Coupling can also be used so that it enhances communication between the objects and
thus increasing reuse while preserve in the scalability and flexibility. Inheritance used in
the project is less and therefore it is more reusable. It helps in predicting that the
inheritance used is not making the project complex and is reliable as well, thus reducing
testing effort.

Acknowledgements

I would like to thank my guide Ms. Jagdeep Kaur and my H.O.D. Dr. Latika Singh for
their understanding, patience and provided me with unending encouragement and
support. Their mentorship was paramount in providing a well rounded experience for my
long-term career goals. They encouraged me to not only grow as a Researcher also as an
independent thinker. I would like to thank the Department of Computer Science at ITM
University, especially for their input, valuable discussions and accessibility.

References
Abdellatief, M., Bakar, A., Sultan, M., Ghani1, A.A.A. and Jabar, M.A. (2012) ‘A mapping study

to investigate component-based software system metrics’, The Journal of Systems and
Software, 13 October, Vol. 86, No. 86, pp.587–603.

Abreu, e B.F. and Melo, W. (1996) ‘Evaluating the impact of object-oriented design on software
quality’, Proceedings of 3rd International Software Metrics Symp., Berlin.

Arisholm, E., Briand, L.C. and Foyen, A. (2004) ‘Dynamic coupling measurement for
object-oriented software dynamic software’, IEEE Transaction on Software Engineering,
Vol. 30, No. 8, pp.491–506.

Bidve, V.S. and Khare, A. (2012) ‘A survey of coupling measurement in object oriented system’,
International Journal of Advances in Engineering & Technology, ©IJAET, January, Vol. 2,
No. 1, pp.43–50, ISSN: 2231-1963.

Bidve, V.S. and Khare, A. (2012) ‘Simplified coupling metrics for object-oriented software’,
International Journal of Computer Science and Information Technologies (IJCSIT), Vol. 3,
No. 2, pp.3839–3842.

Briand, L.C., Daly, J.W. and Wüst, J.K. (1999) ‘A unified framework for coupling measurement in
object-oriented systems’, IEEE Transactions on Software Engineering, January/February,
Vol. 25, No. 1.

Chawla, S. and Nath, R. (2013) ‘Evaluating inheritance and coupling metrics’, International
Journal of Engineering Trends and Technology (IJETT), July, Vol. 4, No. 7, p.2903.

Chidamber, S.R. and Kemerer, C.F. (1994) ‘A metric suite for object oriented design’, IEEE Trans.
Software Engineering, Vol. 20, pp.476–493.

Chhabra, J.K. and Gupta, V. (2010) ‘A survey of dynamic software metrics’, Journal of Computer
Science and Technology, Received June 12, 2008; Revised April 3, 2010, September, Vol. 25,
No. 5, pp.1016–10259.

Chhikara, A. and Chhillar, R.S. (2012) ‘Analyzing the complexity of Java programs using
object-oriented software metrics’, JCSI International Journal of Computer Science, January,
Vol. 9, Nos. 1–3, pp.364–372.

Etzkorna, L.H., Hughes, W.E. Jr. and Davisa, C.G. (2000) ‘Automated reusability quality analysis
of OO legacy software’, Information and Software Technology, April 2001, Vol. 43, No. 5,
pp.295–308

Goulão, M. and Abreu, F.B. (2010) ‘Software components evaluation: an overview’, International
Journal of Computer Applications, December, Vol. 40, No. 1, pp.1080–1196.

 Dynamic inheritance coupling metric-design and analysis 133

Gupta, D. (2013) ‘Coupling based structural metrics – an quality assessment of software
modularization’, International Journal of Advanced Research in Computer Science and
Software Engineering, July, Vol. 3, No. 6, pp.1796–1800.

Gupta, V. (2011) ‘Validation of dynamic coupling metrics for object-oriented software’, ACM
SIGSOFT Software Engineering Notes, September, Vol. 36, No. 5, pp.2020976–2020985.

Hassoun, Y., Counsell, S. and Johnson, R. (2005) ‘Dynamic coupling metric: proof of concept’,
IEE Proc. – Softw., December, Vol. 152, No. 6, pp.273–279.

Honglei, T., Wei, S. and Yanan, Z. (2009) ‘The research on software metrics and software
complexity metrics’, International Forum on Computer Science – Technology and Application
(IFCSTA’09), IEEE Press, January, pp.131–136, doi:10.1109/IFCSTA.2009.39.

Rodriguez, D. and Harrison, R. (2001) ‘An overview of object-oriented design metrics’, Proc. of
the Conference on Software Technology and Engineering Practice (STEP), IEEE Press, July,
pp.230–237, ISBN 08186 78402.

Sharma, A., Kumar, R. and Grover, P.S. (2007) ‘A critical survey of reusability aspects for
component-based systems’, World Academy of Science, Engineering and Technology, Vol. 33,
pp.35–39.

Singh, P. and Singh, H. (2010) ‘Class-level dynamic coupling metrics for static and dynamic
analysis object-oriented systems’, International Journal of Information and
Telecommunication Technology, IJITT, July, Vol. 1, No. 1, ISSN: 0976-5972.

Souley, B. and Bata, B. (2013) ‘A class coupling analyzer for Java programs’, West African
Journal of Industrial and Academic Research, June, Vol. 7, No. 1, p.13.

Suri, P.K. and Garg, N. (2009) ‘Software reuse metrics: measuring component independence and
its applicability in software reuse’, IJCSNS International Journal of Computer Science and
Network Security, May, Vol. 9, No. 5, pp.237–248.

