

 102 Int. J. Software Engineering, Technology and Applications, Vol. 1, No. 1, 2015

 Copyright © 2015 Inderscience Enterprises Ltd.

Design and development of dependency analysis tool
(DA-OOP) for an object oriented programme

Ratneshwer*
Department of Computer Science, MMV,
Banaras Hindu University,
Uttar Pradesh 221005, India
Email: ratnesh@bhu.ac.in
*Corresponding author

Guru Prasad Bhandari and
Kul Bahadur Chhetri
Department of Computer Science,
Banaras Hindu University,
Uttar Pradesh 221005, India
Email: Guru.bhandari@gmail.com
Email: kb.chhetri123@gmail.com

Abstract: This work presents ‘design and development of a dependency
analysis tool (DA-OOP) for an object oriented programme’. The proposed tool
is capable of supporting generation of different dependency views of an object
oriented programme. Dependency analysis of conventional software use
traditional techniques of programme dependency representation. As far as OOP
software is concerned, its specific features like classes, objects, inheritance
relationships, encapsulation, polymorphism, overloading etc. should also be
considered. An object oriented programme may observe dependencies among
namespaces, classes, functions and variables. The main contribution of this
work is to develop a dependency analysis tool for an object-oriented
programme that will extract all possible dependencies of an OOP programme.
The proposed tool ‘DA-OOP’ depicts the dependency information in form of
text view, matrix view and graph view of an object oriented programme. The
outcomes of the tool may be efficiently utilised in testing and maintenance of
an object oriented programme.

Keywords: object oriented programme; dependency analysis; class graph;
inter-class dependency; intra-class dependency.

Reference to this paper should be made as follows: Ratneshwer,
Bhandari, G.P. and Chhetri, K.B. (2015) ‘Design and development of
dependency analysis tool (DA-OOP) for an object oriented programme’,
Int. J. Software Engineering, Technology and Applications, Vol. 1, No. 1,
pp.102–117.

Biographical notes: Ratneshwer is serving as an Assistant Professor in
Department of Computer Science (MMV), Banaras Hindu University, India. He
has received his PhD in Computer Engineering from Department of Computer
Engineering, IIT-BHU Varanasi. He is actively involved in teaching and
research for last eight years. His active research area is software engineering
especially component-based software engineering.

 Design and development of dependency analysis tool (DA-OOP) 103

Guru Prasad Bhandari is a student of Master of Computer Application course at
Department of Computer Science, Banaras Hindu University, India. His
research interest is software engineering.

Kul Bahadur Chhetri is a student of Master of Computer Application course at
Department of Computer Science, Banaras Hindu University, India. His
research interest is software engineering.

1 Introduction

A software dependency analysis tool enhances the understandability of software by
providing various dependency relationships. These extracted dependency information can
be used in the testing and maintenance of the software and also in the software
reengineering. Researchers have proposed several dependency analysis tools (Kittilä,
2008; Stafford et al., 1997; Richardson et al., 1992; Najumudheen et al., 2010) for an
object oriented programme. Considerable amount of work have been done in the area of
representing programmes into dependency graphs but it requires further extension on
already existing techniques. Most of the research efforts focus on the expression-oriented
or statement-oriented dependency. It is very cumbersome task to observe the dependency,
of an object oriented programme, statement by statement as the size of graph would be
very large and it would be difficult to analyse such information. This problem would be
more significant in case of large size programmes. An object-oriented system consists of
a number of messages between its constituent objects, so that dependency representation
should be capable of depicting inter-procedural dependencies, along with the
other concepts of the paradigm namely, polymorphism, dynamic binding, classes and
objects and inheritance (Malloy et al., 1994). Effective dependence analysis of an OOP
requires a different approach. It may be a feasible idea to consider class-oriented and
function-oriented dependency for better system understandability. Such information may
be useful to understand existing programmes, written in object-oriented programming
languages, in a concise manner.

A DA-OOP (dependency analysis for an object-oriented programme) tool has been
developed that captures the various dependencies in an object oriented programme. The
tool ‘DA-OOP’ extract information from the implementation details (source-code) of an
object oriented programme. This tool has dependency representation in three forms i.e.,
text view, graph view and matrix view, if it is applicable. Different concepts of the object
oriented paradigm are represented, including abstraction, polymorphism and class
inheritance. Message exchange among objects also taken into consideration and
dependencies are represented in a very concise manner. A demonstration of the tool is
given here that take an object oriented programme (developed in C#) as input and extract
various types of dependency information in text, graph and matrix view. The division of
the output representations into different views increases the clarity and gives the user an
opportunity to select the required representation that actually requires for the purpose. In
this paper, we have limit our discussion only for dependency analysis of object oriented
programmes and did not include component based and service based software.

The rest of this paper is organised as follows:

 104 Ratneshwer et al.

Section 2 consist the related work, in brief, in the field of object oriented dependency
analysis tool development. Section 3 introduces types of dependency in an object
oriented programme. Design description of DA-OOP tool has been given in Section 4.
Implementation details are described in Section 5. Various user interfaces are given in
Section 6. Section 7 concludes the work.

2 Related work

In this section, a brief review of existing efforts regarding the tool development for
dependency extraction especially in context of an object oriented programme is given. In
literature several efforts have been mentioned. Several commercial tools are available to
analyse object oriented programmes. These efforts are summarised here.

NDepend (2014) is a static analysis tool that supports architecture-level dependency
analysis to get clear idea about cross-dependencies between objects, level of association
between them. NDepend also supports code metrics and dependency matrix, declarative
code rule and comparison of two versions. Linos and Courtois (1994) designed and
implemented a software tool for understanding and re-engineering C++ programmes
called OO!CARE (object-oriented computer-aided re-engineering) tool written in
C a++. This tool considers the programme dependency, polymorphism dependency,
message-pass dependency and implicit programme dependency. This model includes
hierarchical displays for presenting class inheritance, control-flow programme
dependencies and file dependencies. ProDAG (Richardson et al., 1992) is an
implementation-level dependence analysis tool for Ada and C++ programmes. PRoDAG
is an analysis toolset that provides an application programmatic interface for programme
dependence analysis, direct and indirect data dependence, direct and indirect strong
control dependence, direct and indirect weak control dependence, strong syntactic
dependence and weak syntactic dependence. Stafford et al. (1997) developed an
architecture level dependence analysis technique, called chaining and implementing the
technique in a tool called Aladdin. In Aladdin, the representation consists of a set of cells,
where each cell represents the set of relationships that could exist between a given pair of
architectural elements. This set is queried in order to construct chains of dependent
elements. Najumudheen et al. (2010) proposed a dependence-based representation to
test coverage analysis of object-oriented programmes named call-based object-oriented
system dependence graph (COSDG). COSDG represents dependence details, call graph
details and inheritance details, which includes control dependence, data dependence and
membership dependence. Ferrante et al. (1987) presented programme dependence graph
(PDG) that creates the data and control dependency explicitly where data dependency
represents the data flow relationships and control dependency represents control flow
relationships of a programme. PDG helps to vectorisation, node splitting, code motion
and loop fusion that permits incremental optimisation by optimising transformations
in compiler optimisation. Linos (1995) presented a tool called PolyCARE
(polyparadigmatic computer-aided re-engineering), supports programmes written in
multiple programming languages (i.e., both object-oriented and procedural languages). It
maintains a repository with control and data flow programme dependencies. Visualisation
of such dependencies, transformation tools between different representations and
graphical abstraction techniques are the main features of PolyCARE. The user interface is

 Design and development of dependency analysis tool (DA-OOP) 105

done through specially designed windows. Each window in PolyCARE is equipped with
a group of typical operations for manipulating graphs or text.

It can be observed that various tools are available for dependency analysis for an
object oriented programme. The present work extends the above contributions further by
adding some newer features. In this present work we have categorised the dependency
information in two ways that is micro view and macro view. Micro view shows the
relationship between objects where as macro view clearly displays which object function
calling which other object functions. Similarly it also displays inter object dependency
and intra object dependency. The main purpose of DA-OOP is to help maintainer to
visualise the dependency of block of code from different prospective that could allow
easy debugging of the programme and code refactoring.

3 Dependency in an object oriented programme

An object-oriented system is composed of a collection of communicating objects that
cooperate with one another to achieve some desired goals. Similar objects form classes,
which provide the static description of the properties and behaviours that their instances
will have. Therefore, extracting, analysing and modelling classes/objects and their
relationships is of key importance in acquiring in-depth understanding of object-oriented
software systems (Dong and Godfrey, 2007). Various types of dependencies, in an object
oriented programme, are proposed in the literature. Here we have briefly mentioned some
dependency types that we have deal within our work.

3.1 Class dependencies

Class dependencies are dependencies among classes due to inheritance. Class
dependency can either be implicit or explicit on the basis of either inheriting from the
inbuilt classes or user-defined type. This dependency represents super class/parent class
to sub-class/child class relationship in inheritance hierarchy.

3.2 Interface dependencies

Interface dependencies are dependencies among interfaces and classes. While one class
uses interface or interface uses another interface then there would be interface
dependency. Class A cannot carry out its work without some implementation of
interface I. Therefore, whenever a class depends on an interface, that class also depends
on an implementation (Ross, 2014).

3.3 Method/functional dependencies

Method or field dependencies are dependencies on concrete methods or fields of an
object. It does not matter what the class of the object is, or what interfaces it implements,
as long as it has a method or field of the required type.

 106 Ratneshwer et al.

3.4 Compile-time and runtime dependencies

A dependency that can be resolved at compile time is a compile-time dependency. A
dependency that cannot be resolved until runtime is a runtime dependency. Compile-time
dependencies tend to be easier for developers to see than runtime dependencies, but
sometimes runtime dependencies can be more flexible (Ross, 2014).

3.5 Interclass dependency

One class calls an object of another class to use its properties if its properties are defined
as public access qualifier. Inter-class relationship presents class to class reference
relationship. Inter-class dependency can be viewed into two aspects: micro view
and macro view. Object declaration of one class may occur in every other class
hence micro view show this relationship. Macro view describes relationships of one
class to each and every function of other classes if this class calls the function declared in
another class.

 3.6 Intra-class dependency

There may be relationship between a function of a class to another function of the same
class. If a function calls to another function defined at the same class then intra-class
dependency occurs. Intra-class dependency graph does not show any relationship among
classes.

3.7 Control and data dependency

Control dependence is a situation in which a programme’s instruction executes if the
previous instruction evaluates in a way that allows its execution. A statement S2 is
control dependent on S1 if and only if S2’s execution is conditionally guarded by S1
(Beck and Cunningham, 1989). Data dependence arises from two statements which
access or modify the same resource. A statement S2 is flow dependent on S1 if and only
if S1 modifies a resource that S2 reads and S1 precedes S2 in execution (Cunningham,
1999). Data dependency concerns with the dependency among data values by checking
its output parameters and returned value. Programme dependency is the composite form
of both control dependency and data dependency.

4 Design of the proposed tool ‘DA-OOP’

The developed tool ‘DA-OOP’ takes an object oriented programme as input and
generates following dependency representations: class hierarchy graph (CHG), class to
function relationship graph, class relationship (micro view and macro view),
control dependency graph, data dependency graph and fan-in and fan-out graph
of an object. A design description of the tool ‘DA-OOP’ has been shown here.
Unified modelling language (UML) has been used for making design of different
activities in the system.

 Design and development of dependency analysis tool (DA-OOP) 107

4.1 Activity diagram

Figure 1 shows an activity diagram for ‘DA-OOP’. First one has to import the project
source code for which dependency information has to be generated. Then project source
code converted into a single project file. Then the tool generate various dependency
information such as CHG, class graph, class relationship graph, interclass dependency
graph and intra-class dependency graph. Two aspects are displayed as – micro view and
macro view of class relationship graph after class relationship graph. There is a facility
that the generated results can be imported into an excel file for storage purpose.

Figure 1 Activity diagram of the tool ‘DA-OOP’ (see online version for colours)

4.2 Component diagram

This view provides an opportunity to map classes onto implementation components and
nodes (Rumbaugh et al., 1999). Figure 2 shows a component diagram of ‘DA-OOP’. To
import the project ProjectDomain component has been used. ImportingModule gets
imported project and create project file for that particular project. Various graph models
are getting project file to analyse the project from the importing Module component and
generating their output through MatrixView, TextView and GraphView components.
MatrixView component is also linked with ExportingModule component to export the
matrix version into excel and GraphView with GraphDisplay component to display graph

 108 Ratneshwer et al.

version of dependency as image form. All three components are using mainInterface
component.

Figure 2 Component diagram of ‘DA-OOP’ (see online version for colours)

5 Description of the tool ‘DA-OOP’

In OOP, different types of dependencies among block of code can occur if one block use
the properties of another block or share data variables. In fact, testing, debugging, code
impact analysis may be achieved with the help of different views of dependencies such as
text view, matrix view and graph view. We have taken small sample code to illustrate the
‘DA-OOP’ tool. This is just the example code but our tool is capable to handle large size
C# projects also. In Figure 3, we have mentioned the notations used for generated
dependency graphs.

Figure 3 Notations used for graphical representations (see online version for colours)

 Design and development of dependency analysis tool (DA-OOP) 109

We have demonstrated the features of ‘DA-OOP’ with pictorial representation of the
graphs representing the sample code given as example. The graphical representation of
different vertices and edges are shown in the Figure 3. Diamond, rectangle and oval
shape are used for namespace node, class node and function node respectively. Different
edges are representing different type of relationships on the basis of their colour and
emphasise. Below is the sample code that we have used for the purpose of demonstration.

Figure 4 Sample programme written in C#

5.1 CHG (class hierarchy graph)

It presents super class/parent class to sub-class/child class relationships and by checking
whether the class is being inherited by other class or not. It has three views – text view,
matrix view and graph view. Text view just shows super to sub-class relationship by
arrow pointer like as child A → parent ; means child A is inherited by parent class parent.
In matrix view, we have mentioned M*M matrix to hold the relationship of each and
every class to any other classes. If a class inherits any other class, then matrix entry is
represented by ‘1’, where row represents the child class and column represents the parent
class and 0 means no inheritance relationship. Graph-Viz tool (Graphviz, 2014) has been

 110 Ratneshwer et al.

used to display the graph view into browser. Inheritance edge goes from super class to
child class e.g., child A and child B classes are inheriting parent class hence inheritance
edge is pointing to child A and child B classes coming from parent.

5.2 Class graph

Class call graph shows graph of all the namespaces and classes with their corresponding
methods. It has two views – text view and graph view. It depicts all the namespace,
classes and their corresponding functions by using class membership edges and method
membership edges among namespace node, class node and method node. Figure 5(b)
demonstrates the class graph of sample code given in Figure 4.

Figure 5 Several graph view of the sample code, (a) CHG (b) class graph (c) class relationship
micro view (d) class relationship macro view (see online version for colours)

5.3 Class relationships (micro view)

Class relationships are of two types, one is micro view which is collapsed view and
another is macro view which is expanded form. Micro view depends on whether a class
has created an object of another class for further use or not. Macro view checks which
class is creating an object of another class and as well as which function has been called.

Class micro view presents relationship among classes on the basis of whether
the class creates an object of another class or not. This relationship has also three
views – text view, matrix view and graph view. Calling class – called class → object
created is the format of text view of class relationships micro view. For example
mainClass –childA → objchildA where mainClass creates an object objchild A of child A.
Matrix view has m*m matrix where m is the number of all the classes in the project. Cell
value ‘1’ means row class is creating an object of column class. Object reference edge

 Design and development of dependency analysis tool (DA-OOP) 111

has been used to show relationship between calling class to called class. Class nodes and
inheritance edges are used to demonstrate class micro view in Figure 5(c) where
inheritance edge points to child A and child B from mainclass that means mainClass has
created an object of that two classes.

5.4 Class relationship (macro view) graph

If one class creates an object of another class and uses its behaviour of that class then
only class relationship macro view exists. This feature has two views text and graph
view. Figure 5(d) depicts class relationship macro view graph of sample code shown in
Figure 4. For example method a of childA class has been used in mainClass by creating
an object of childA.

5.5 Control dependency graph

Control dependency analysis or control-flow analysis describes the flow of code
execution. Control enters into the block through the first statement as entry point and
remains there until the last statement does not complete its execution. This has been
shown with the help of different edges and nodes. Figure 6(a) exhibits the control-flow of
the object oriented programme given in Figure 4 that includes all the namespaces, classes
and functions with different edges – class membership edge from namespace to class,
function membership edge from class to function. Orange colour edge shows
entry-control whereas violet colour edge shows exit-control from the block. For e.g.,
main()defined inside mainClass class, is calling methodAa() defined inside childA()
hence shown by entry-control edge, is going from main() and returning back by violet
line from medhodAa() to main()that means control returns back from methodAa() to
main() after completion of the last statement of methodAa().

Figure 6 Demonstration of (a) control dependency and (b) data dependency (see online version
for colours)

 (a) (b)

5.6 Data dependency graph

The simple techniques here that has been implemented to check the data dependency
between calling function to called function is just by checking the input parameters of the

 112 Ratneshwer et al.

function and output parameter or checking whether the called function returns value or
not. If called function gets the values from calling function as its input parameter(s), we
are sure that called function is data dependent on calling function and if called function
return value back to the calling function then calling function is data dependent on called
function because here calling function is waiting for the data from called function. Data
dependency has text view and graph view. Figure 6(b) demonstrates the data dependency
graph of the sample code shown in Figure 4 where blue colour arrow shows the data-in
edge from calling function to called function and red colour arrow shows the data-out
edge that means called function returns the data value after execution of statements inside
it to the calling function. For e.g., main() of mainClass is calling function methodAa() of
childA. main() gets values from methodAa() hence it is shown by blue colour. And at last
methodAa() sends the return value or data to the main() shown by red colour arrow or
data-out edge.

5.7 Programme dependency graph

DA-OOP is capable to exhibits the text view and graph view of programme dependency.
Different edges and nodes are subjected to their special meaning shown in Figure 3.
Figure 7(a) exhibits the programme dependency graph of the sample code shown in
Figure 4 where blue colour arrow shows the data-in edge from calling function to called
function and red colour arrow shows the data-out edge that means called function returns
the data value after execution of to the calling function. Programme dependency graph
includes all the namespaces, classes and functions with different edges – class
membership edge from namespace node to class node, function membership edge from
class to function. Orange colour edge shows entry-control whereas violet colour edge
shows exit-control from the block For e.g., main() of mainClass is calling function
methodAa() of childA. main() gets values from methodAa() hence it is shown by blue
colour edge. And at last methodAa() sends the return value or data to the main() shown
by red colour arrow or data-out edge and also shown control dependency by
entry-control edge, is going from main() and returning back by violet line from
medhodAa() to main() that means control returns after last instruction.

Figure 7 Demonstration of (a) programme dependency graph and (b) intra class dependency
graph (see online version for colours)

(a) (b)

 Design and development of dependency analysis tool (DA-OOP) 113

5.8 Intra-class dependency graph

Dependency among functions within a class is shown in intra-class dependency graph. It
has also text view and graph view. Functions of one class are only connected to the
functions of the same class if one function invokes another function. In Figure 7(b),
dependency among functions within a class has been shown in intra-class dependency
graph of the sample code given in Figure 4. While a function of class calls to another
function of the same class then there would be intra-class dependency which is shown by
the call edges and call-return edges. For example: methodBb of childB is calling shown
by call edge to methodBa inside the same class and returning back from methodBa to
methodBb after last statement execution.

5.9 History record

DA-OOP creates the history record of already opened project as repository. It maintains
file of the analysed project as a copy of that project in text form. In the future, maintainer
or tester will be able to check the dependency from the history project list even he lost the
project source code.

6 User Interface and output

In this section, the main interface of ‘DA-OOP’ is presented. Windows Form design has
been used to design the interface and the outputs are shown in the browser. Forms have
button controls to perform the desired operation on clicking event. Label controls are
used to support the user to understand the output. The concept has been implemented
using C#.Net 2012, Graph-Viz tool, Internet Explorer and MS-DOS. Regular expression
and file handling have been used in the project. User has to import the source code from
importing form before analysing the code.

6.1 Main user Interface

Figure 8 shows the main user interface, includes all the forms and controls inside it.
Project title is shown in the title bar.

Menu bar is located just below the title bar that includes all the options of the system
but additional options are shown in left side of this interface. Notations are given in the
centre of the interface left to work-flow picture. Various relationships are listed on the
left of the interface with their corresponding options on button controls. Icon menu bar
holds the icons of link of main features of the system to make the system more users
friendly.

User are also allowed to select project from the list of already analysed or opened
project in this DA-OOP from the second tab ‘select from collection’ tab option which is
next to ‘import new project’. Project title will be shown in the centre after selecting the
project package and list of files which are included in that project will also be shown as
list in the centre list box control. User can check whether the project uploaded is that he
wants to analyse or not by clicking button load. Figure 9 shows project import interface
of DA-OOP.

 114 Ratneshwer et al.

Figure 8 Main interface of ‘DA-OOP’ (see online version for colours)

Figure 9 Project importing form of DA-OOP (see online version for colours)

 Design and development of dependency analysis tool (DA-OOP) 115

Figure 10 Sample interface of text and matrix view of CHG of DA-OOP (see online version for
colours)

Figure 11 (a) Text representation and (b) Matrix representation of CHG of DA-OOP (see online
version for colours)

(a) (b)

Figure 12 Graph view of programme dependency by DA-OOP (see online version for colours)

 116 Ratneshwer et al.

At least two forms are presented for representation of one graph. Here we have presented
only text, matrix and graph view of class hierarchy relationships as example. Figure 9
shows sample text view and matrix view form of DA-OOP. Figure 10(a) shows text view
and 10(b) shows matrix view of CHG of DA-OOP separately. Figure 11 presents the
graph view of dependency graph which is shown in browser using Graph-Viz tool.

7 Conclusions

A tool named as ‘DA-OOP’ has been designed and developed which will eventually be
useful to analyse the dependency among code blocks for object oriented programme
maintainer. All project parameters such as CHG, class graph, class relationship micro
view and macro view, Control dependency, data dependency, programme or system
dependency, interclass relationships and intra class relationships with user friendly
interface are shown precisely in a tool. The hierarchical success tools for identification of
dependency are developed but DA-OOP has tried to include all the possible types of
dependencies of an object oriented programme.

Further supportive research is required to analyse of various object oriented features
and uncertainties. In future, we will try to include all possible dependencies of
component based programming, service-oriented architecture and abstract-oriented
architecture as well. We will try to make this tool interoperable for any programming
language and portable for any platform.

References
Beck, K. and Cunningham, W. (1989) ‘A Laboratory for teaching object-oriented thinking’,

Object-Oriented Programming Languages and Systems Conference Proceedings, October,
Also SIGPLAN Notices, Vol. 24, No. 10.

Cunningham, H.C. (1999) ‘Object-oriented design and programming’, Lecture Notes, CSci 581-01:
Special Topics in Computer Science Object-Oriented Design and Programming Spring
Semester, Department of Computer and Information Science The University of Mississippi.

Dong, X. and Godfrey, M. (2007) ‘System-level usage dependency analysis of object-oriented
systems’, Proceedings of 23rd IEEE International Conference on Software Maintenance
(ICSM 2007), 2–5 October 2007, Paris, France, IEEE 2007, ICSM 2007, pp.375–384.

Ferrante, J., Ottenstein, K.J. and Warren, J.D. (1987) ‘The program dependence graph and its use in
optimization’, ACM Transactions on Programming Languages and Systems, Vol. 9, No. 3,
pp.319–349.

Graphviz (2014) Graph Visualization Software, Web Article [online] http://www.graphviz.org/
(accessed 1 April 2014).

Kittilä, K. (2008) Analysing and Managing Software Dependencies with a Dependency Structure
Matrix Tool, Master Thesis, Department of Information Processing Science, University of
Oulu.

Linos, P. (1995) ‘PolyCARE: a tool for reengineering multi-language program interactions’,
Proceedings of 1st IEEE International Conference on Engineering Complex Systems, Ft.
Lauderdale, FL, 6–11 November, pp.338–341.

Linos, P.K. and Courois, V. (1994) ‘A tool for understanding object-oriented program
dependencies’, Proceedings of the IEEE Third Workshop on Program Comprehension, 14–15
November, Washington, DC., pp.20–27.

 Design and development of dependency analysis tool (DA-OOP) 117

Malloy, B., McGregor, J.D., Krishnaswamy, A. and Medikonda, M. (1994) An Extensible Program
Representation for Object-Oriented Software, Technical report, Clemson University.

Najumudheen, E.S.F., Mall, R. and Samanata, D. (2010) ‘A dependence representation for
coverage testing of object-oriented programs’, Journal of Object Technology, Vol. 9, No. 4,
pp.1–23.

NDepend (2014) Web Article [online] http://www.ndepend.com/Features.aspx (accessed 15 March
2014).

Richardson, D.J., O’Mally, T.O., Moore, C.T. and Aha, S.L. (1992) ‘Developing and integrating
ProDog in the Arcadia environment’, Proceedings of ACM SIFSOFT 92: Fifth Symposium on
Software Development Environments, Washington, D.C., December, pp.109–119.

Ross, A. (2014) Understanding Dependencies, Web Article [online]
http://tutorials.jenkov.com/ood/understanding-dependencies.html (accessed 15 March 2014).

Rumbaugh, J., Jacobson, I. and Booch, G. (1999) The Unified Modeling Language Reference
Manual, December 1998, Addison-Wesley, Massachusetts, USA.

Stafford, J., Richardson, D. and Wolf, A. (1997) Aladdin: A Tool for Architecture-Level
Dependence Analysis of Software Systems, Technical Report CU-CS-858-98, Department of
Computer Science, University of Colorado.

