Exergy of solar radiation
by Stephan Kabelac
International Journal of Energy Technology and Policy (IJETP), Vol. 3, No. 1/2, 2005

Abstract: Solar radiation reaching the ground is accompanied with radiation entropy. When the entropy production rate within any solar energy conversion device is to be calculated, the incoming radiation entropy flux has to be known. In this contribution, first it is shown how the radiation entropy flux arriving on earth is to be calculated. Secondly, the interaction between the incoming radiation and the receiver surface is identified as one entropy production source. An approach for a reversible radiation conversion device is proposed. Maximum conversion efficiencies for non-concentrating solar energy converters are found to be between 50–77% of the incoming radiation energy, depending on atmospheric conditions.

Online publication date: Tue, 05-Apr-2005

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Energy Technology and Policy (IJETP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com