Entropy generation assessment of shell and tube latent heat storage unit
by Manish K. Rathod; Jyotirmay Banerjee
International Journal of Exergy (IJEX), Vol. 16, No. 1, 2015

Abstract: Thermodynamic optimisation for latent heat thermal energy storage unit (LHSU) is carried out using the theory of minimisation of entropy generation number. The influence of key parameters like heat transfer fluid (HTF) inlet temperature, initial temperature of phase change material (PCM) and mass flow rates of HTF on entropy generation number is analysed. Analysis is carried out for two PCMs, i.e., paraffin wax and stearic acid, with different melting temperature to establish the influence of melting temperature of PCM on entropy generation number. The results show that minimum HTF inlet temperature provides minimum entropy generation number. The results also demonstrate that higher initial temperature of PCM provides minimum entropy generation number during solidification process. The mass flow rate of HTF has negligible influence on the entropy generation number compared with the influence of fluid inlet temperature and initial temperature of PCM.

Online publication date: Tue, 03-Feb-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Exergy (IJEX):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com