Electronic structure and optical vibrational modes of 3C-SiC nanowires
by Alejandro Trejo; Miguel Ojeda; José Luis Cuevas; Álvaro Miranda; Luis A. Pérez; Miguel Cruz-Irisson
International Journal of Nanotechnology (IJNT), Vol. 12, No. 3/4, 2015

Abstract: The electronic structure and vibrational optical modes of silicon carbide nanowires (SiCNWs) were studied using the first principles density functional theory. The nanowires were modelled along the [111] direction using the supercell technique passivating all the surface dangling bonds with H atoms, OH radicals and a combination of both. Results show that the full OH passivation lowers the band gap energy compared to the full H passivation owing to C-OH surface states. A shift of the highest optical vibrational modes of Si and C to lower frequency values compared to their bulk counterparts was observed in accordance with phonon confinement scheme.

Online publication date: Sat, 31-Jan-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanotechnology (IJNT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com