2 Int. J. Digital Human, Vol. 1, No. 1, 2015

Digital human models

Gregory C. Smith*

CE Engineering,

1380 NE Airport Way,
Suite K79464, Portland,
Oregon 97230, USA
Email: gsfsmith@msn.com
*Corresponding author

Shana S. Smith

Department of Mechanical Engineering,
National Taiwan University,

No. 1, Section 4, Roosevelt Road,
Taipei City, 10617, Taiwan

Email: ssmith@ntu.edu.tw

Abstract: This study describes digital human models. This study also describes
trends in digital human models, shows that the most important trend in digital
human models is integrated digital human models, shows that integrated digital
human models are frameworks and models and describes frameworks and
models that can be used to create digital human models. The results can be used
to describe, select, or create digital human models.

Keywords: digital human models; integrated digital human models;
frameworks; models.

Reference to this paper should be made as follows: Smith, G.C. and
Smith, S.S. (2015) ‘Digital human models’, Int. J. Digital Human, Vol. 1,
No. 1, pp.2-29.

Biographical notes: Gregory C. Smith is a Research Engineer at CE
Engineering. His research interests include design methods, digital human
models and robotics.

Shana S. Smith is a Professor in the Department of Mechanical Engineering at
National Taiwan University. Her teaching and research interests include
user-centred design, lifecycle design, engineering graphics, virtual reality and
technology in education.

1 Introduction
Digital human models are becoming widely used in science, engineering and education.

Digital human models can be used to study the relationships between environmental
conditions and human responses, improve the usability, comfort and safety of products
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and increase the realism and accuracy of training systems. As a result, scientists,
engineers and educators need information on digital human models.

This study describes digital human models. This study also describes trends in digital
human models, shows that the most important trend in digital human models is integrated
digital human models, shows that integrated digital human models are frameworks and
models and describes frameworks and models which can be used to create digital human
models.

Section 2 describes digital human models. Section 3 describes trends in digital human
models. Section 4 presents conclusions. The results show that digital human models are
models, programmes, or devices, theoretical, analytical, or physical models and
behavioural, functional, or structural models. The results show that digital human models
are integrated or individual models. The results can be used to describe, select, or create
digital human models.

2 Digital human models

Digital human models are models of humans. Digital human models are models,
programmes, or devices, theoretical, analytical, or physical models and behavioural,
functional, or structural models. Digital human models are integrated or individual
models.

2.1 Three models
Figures 1-3 show three models which are theoretical models.

Figure 1 A model which can be used to study human behaviours
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The model in Figure 1 is a behavioural model which can be used to study human
behaviours. The model in Figure 1 is an integrated model which consists of a framework
and sensing (seeing, hearing, touching, tasting, or smelling), thinking (communicating,
remembering, deciding, solving, or learning) and acting (speaking, grasping, or moving)
models (Carruth et al., 2007).
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Figure 2 A model which can be used to study human functions
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The model in Figure 2 is a functional model which can used to study human functions.
The model in Figure 2 is an integrated model which consists of a framework and sensing
(detecting, identifying, or measuring), relating (selecting, matching, or transforming) and
responding (generating, or modifying) models (Miller et al., 2010; Noble et al., 2012).

Figure 3 A model which can be used to study human structures
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The model in Figure 3 is a structural model which can be used to study human structures.
The model in Figure 3 is an integrated model which consists of a framework and
sensing (experiencing, contacting, or receiving), associating (selecting, matching, or
transforming) and organising (creating, or modifying) models (Smith and Yen, 2010).

2.2 Three programmes

Figures 4-6 show three programmes which are analytical models.
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Figure 4 A programme which can be used to analyse human bicycling behaviours (see online
version for colours)

—

The programme in Figure 4 is a behavioural model which can be used to analyse human
behaviours. The programme in Figure 4 is an integrated model which consists of a
framework and sensing (seeing, hearing, touching, tasting, or smelling), thinking
(communicating, remembering, deciding, solving, or learning) and acting (speaking,
grasping, or moving) models (Cangley et al., 2012).

Figure 5 A programme which can be used to analyse human circulatory functions (see online
version for colours)
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The programme in Figure 5 is a functional model which can be used to analyse
human functions. The programme is an integrated model, which consists of a framework
and sensing (detecting, identifying, or measuring), relating (selecting, matching, or
transforming) and responding (generating, or modifying) models (Jiang and Mangharam,
2013).

Figure 6 A programme which can be used to analyse human atomic structures (see online version
for colours)

CENP-A

The programme in Figure 6 is a structural model which can be used to analyse human
structures. The programme is an integrated model, which consists of a framework and
sensing (experiencing, contacting, or receiving), associating (selecting, matching, or
transforming) and organising (creating, or modifying) models (Tachiwana et al., 2011).

2.3 Five devices
Figures 711 show five devices which are physical models.

Figure 7 An automaton which can be used to duplicate human writing behaviours (see online
version for colours)
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The devices in Figures 7-11 are behavioural models which can be used to duplicate
human behaviours. The devices are integrated models which consist of frameworks and
sensing (seeing, hearing, touching, tasting, or smelling), thinking (communicating,
remembering, deciding, solving, or learning) and acting (speaking, grasping, or moving)
models (Kolesnikov-Jessop, 2012; Waurzyniak, 2013; Rodic, et al., 2009; Iwata and
Sugano, 2009; Mellman and Xu, 2010).

Figure 8 An industrial robot which can be used to duplicate human lifting behaviours (see online
version for colours)

Figure 9 An agent-based robot which can be used to duplicate human monitoring behaviours
(see online version for colours)

wireless communication
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Figure 10 A service robot which can be used to duplicate human searching behaviours
(see online version for colours)
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Figure 11 An intelligent robot which can be used to duplicate human playing behaviours
(see online version for colours)

3 Trends in digital human models

Integrated models are the most important trend in digital human models. Integrated
models consist of frameworks and models. Therefore, integrated models can be used to
create simple, complex, or custom models. As a result, integrated models can be used to
complete simple, complex, or custom tasks, with different levels of accuracy or
computing time.
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3.1 Three frameworks

Figures 12—14 show three frameworks which can be used to create digital human models.

Figure 12 A framework which can be used to create behavioural models
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The framework in Figure 12 can be used to create behavioural models. The framework
uses sensing (seeing, hearing, touching, tasting, or smelling), thinking (communicating,
remembering, deciding, solving, or learning) and acting (speaking, grasping, or moving)
models to create behavioural models. The thinking (communicating, remembering,
deciding, solving, or learning) models use condition-action rules to model human
thinking (Carruth et al., 2007).

Figure 13 A framework which can be used to create functional models
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The framework in Figure 13 can be used to create functional models. The framework
uses sensing (detecting, identifying, or measuring), relating (selecting, matching, or
transforming) and responding (generating, or modifying) models to create functional
models. The relating (selecting, matching, or transforming) models use XML APIs to
model human relating (Miller et al., 2010; Noble et al., 2012).
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Figure 14 A framework that can be used to create structural models
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The framework in Figure 14 can be used to create structural models. The framework
uses sensing (experiencing, contacting, or receiving), associating (selecting, matching, or
transforming) and organising (creating, or modifying) models to create structural models.
The associating models use mathematical equations to create structural models (Smith
and Yen, 2010).

3.2 Thirty models

3.2.1 Seventeen sensing models

Figures 15-30 show 17 sensing (seeing, hearing, touching, tasting, or smelling) models
which can be used to create digital human models.

Figure 15 A camera (see online version for colours)

The seeing model in Figure 15 uses a camera to capture visible images. The camera uses
a lens, an aperture and sensors to capture light, change focus, change focal length and
capture visible images (Smith and Smith, 2011).
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Figure 16 A biomimetic eye (see online version for colours)

The seeing model in Figure 16 uses a biomimetic eye to capture visible images. The
biomimetic eye uses a gel polydimethy-siloxane silicone (PDMS) lens, shape memory
alloy (SMA) wires, grippers, load arms and an outer ring to capture light, change focus,
change focal length and capture visible images (Choi et al., 2008).

Figure 17 An infrared camera (see online version for colours)

The seeing model in Figure 17 uses an infrared camera to capture infrared images. The
infrared camera uses a fixed-focus lens and infrared sensors to capture infrared light and
capture infrared images (Kao and Smith, 2011).
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Figure 18 An object-recognition algorithm
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The seeing model in Figures 18-20 uses an object-recognition algorithm to detect the
shapes, sizes, locations and orientations of two-dimensional objects in images. The
object-recognition algorithm uses histograms, regression analysis and shape rules to
detect lines, detect shapes and detect the shapes, sizes, locations and orientations of
two-dimensional objects in images (Smith and Smith, 2011).

Figure 21 A pattern-recognition algorithm
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Figure 22 Four images of traffic signs (see online version for colours)
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The seeing model in Figures 21-22 uses a pattern-recognition algorithm to detect patterns
(words) in images. The pattern-recognition algorithm uses colour spaces and support
vector machines (SVMs) to detect colours, detect shapes and detect patterns (words) in
images (Maldonado-Bascon, 2007).

Figure 23 An object-reconstruction algorithm
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Figure 24 A three-dimensional object in images (see online version for colours)

The seeing model in Figures 23-24 uses an object-reconstruction algorithm to detect
three-dimensional objects in images. The object-reconstruction algorithm uses camera
parameter estimation, key-point selection and hierarchical matching algorithms to
determine viewpoints, select key-points, match key-points and detect three-dimensional
objects in images (Zimmer and Miteran, 2001; Lu and Smith, 2006).

Figure 25 An object-tracking algorithm
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Figure 26 A three-dimensional object in images (see online version for colours)
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The seeing model in Figures 25-26 uses an object-tracking algorithm to track
three-dimensional objects in images. The object-tracking algorithm uses a camera
parameter estimation algorithm and Kalman filters to determine viewpoints, detect
three-dimensional objects and track three-dimensional objects in images (Kao and Smith,
2011).

Figure 27 A microphone (see online version for colours)

The hearing model in Figure 27 uses microphones to capture sounds. The microphones
use sound pressure level transducers and electrical wires to detect sound-wave induced
vibrations, convert sound-wave induced vibrations into electrical signals, transmit
electrical signals and capture sounds (Lee et al., 2014).

The hearing model in Figure 28 uses a biomimetic ear to capture sounds. The
biomimetic ear uses an ear simulator, a receiver microphone, a microphone preamplifier,
a power supply and electrical wires to amplify sound waves, detect sound-wave induced
vibrations, convert sound-wave induced vibrations into electrical signals, amplify
electrical signals, transmit electrical signals and capture sounds (Bravo et al., 2008).
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Figure 28 A biomimetic ear
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Figure 29 A sound localisation algorithm
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The hearing model in Figure 29 uses a sound-localisation algorithm to detect the
locations of objects from sounds. The sound localisation algorithm uses receivers, ILDs
(interaural level differences), IPDs (interaural phase differences) and GMMs (Gaussian
mixture models) to detect sound levels, detect sound phases, detect sound souces and
detect the locations of objects from sounds (May et al., 2011).
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Figure 30 A speech recognition algorithm
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The hearing model in Figure 30 uses a speech-recognition algorithm to detect words from
sounds. The speech recognition algorithm uses HMMs (hidden Markov models) and LR

parsers (language-recognition parsers) to detect phonemes from sounds and detect words
from sounds (Minami et al., 1995).

Figure 31 A biomimetic finger (see online version for colours)

The touching model in Figure 31 uses a biomimetic finger to detect vibrations. The

biomimetic finger uses an artificial finger and a vibration sensor to contact physical
objects and detect vibrations (Smith et al., 2012b).

Figure 32 The amplitudes of a vibration (see online version for colours)
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Figure 33 The frequencies of a vibration
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The touching model in Figures 32-33 uses an object-recognition algorithm to detect
objects from vibrations. The object-recognition algorithm uses Fourier transforms to
detect the amplitudes of vibrations, to detect the frequencies of vibrations and to detect
objects from vibrations (Smith et al., 2012b).

Figure 34 A chemical taste sensor
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The tasting model in Figure 34 uses a chemical taste sensor to detect tastes from chemical
concentrations. The chemical taste sensor uses an array of electrochemical sensors and
two-stage RBFNs (radial basis function networks) to detect chemical concentrations and
to detect tastes from chemical concentrations (Ishihara et al., 2005).

Figure 35 Two information processing models
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The tasting model in Figure 35 uses two information processing models (model ¢,
model f) to detect objects from tastes. The two information processing models (model ¢,
model p) use three neural networks (NN-al, NN-o2, NN-f) to detect sensory
information from chemicophysical information, to detect tastes from chemicophysical
information and to detect objects from tastes (Oguri et al., 2000).

Figure 36 A biomimetic sensor (see online version for colours)
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The smelling model in Figure 36 uses a biomimetic sensor to detect smells from
odour-induced electrical signals in human olfactory tissue. The biomimetic sensor uses
human olfactory tissue, LAPS (light-addressable potentiometric sensors), power supplies
and principal component analysis to create odour-induced electrical signals in human
olfactory tissue, to group odour-induced electrical signals in human olfactory tissue into
smells and to detect smells from odour-induced electrical signals (Liu et al., 2010).

Table 1 Two object recognition algorithms

Classification accuracies on the ‘photo’ set, using Euclidean metric

. Parameters Classification
Representation space 0
o C accuracy (%)
Standard 0.02 200 78.76
Sr 0.04 140 90.52

The smelling model in Table 1 uses two object-recognition algorithms to detect objects
from smells. The two object recognition algorithms (the ‘Standard’ and °Sy’
object-recognition algorithms) use features and a Euclidean metric to detect objects (the
‘photo’ set) from smells (Bicego, 2005).

3.2.2 FEight thinking, relating, or associating models

Table 2 and Figures 37-47 show eight thinking (communicating, remembering, deciding,
solving, or learning), relating (selecting, matching, or transforming), or associating
(selecting, matching, or transforming) models.
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Table 2 User feelings about objects
Elegant Ordinary
Simple Complex
High tech Traditional
Luxurious Basic
Beautiful Plain
Unique Common
Figure 37 Design elements of objects (see online version for colours)
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The communicating model in Table 2 and Figure 37 uses selected words to communicate
information about objects. The selected words are used to communicate user feelings
about objects and design elements of objects (Smith and Smith, 2012).

Figure 38 A framework for creating information models
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The remembering model in Figure 38 uses a framework and information models to
define, store and recall information about objects. The framework uses translation
methods, comparison methods and integrating methods to translate information about
objects into ontologies, compare ontologies to information requirements, integrate
ontologies into information models and use information models to define, store and recall
information about objects (Taisch et al., 2011).

Table 3 A survey
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The deciding model in Table 3 and Figure 39 uses surveys, semantic spaces and matching
methods to make decisions about objects. The surveys use terms to describe customer
needs. The semantic spaces use term-by-design matrices {M}, term matrices {77}, scaling
factor matrices {S} and design matrices {D} to describe designs. The matching methods
use the surveys and semantic spaces to create customer need vectors {M,}, project
customer need vectors {M,} into semantic spaces {7, S, D} and match projected
customer need vectors {D,} to projected design vectors {D} in semantic-spaces {7, S, D}
(Smith and Smith, 2012).

Figure 40 An object

Figure 41 A disassembly sequence structure graph
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The solving model in Figures 40—41 uses a graph-searching algorithm to create
disassembly plans for objects. The graph-searching algorithm uses disassembly sequence
structure graphs and constraint matrices to model objects and the relationships between
parts in objects. The graph-searching algorithms use rules to search the disassembly
sequence structure graphs and constraint matrices to create disassembly plans for objects
(Smith et al., 2012a).
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Figure 42 A sequence-learning algorithm
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Figure 43 A task related to objects (see online version for colours)

Figure 44 Circulatory system responses for flight safety simulations
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The learning model in Figures 42—43 uses a sequence-learning algorithm to learn tasks
related to objects. The sequence-learning algorithm uses sensors, an agent and a planner
to capture signals, set goals, choose actions and learn tasks related objects (Rohrer,
2007).

The selecting model in Figure 44 uses environmental conditions (pressures,
accelerations and forces) and differential equations to select circulatory system responses
(pressures, flows and volumes) for flight safety simulations (Hardy et al., 1982).

Figure 45 Molecular theory principles
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The matching model in Figure 45 uses molecular theory principles to match induced
environmental conditions to molecular movements in molecular structures (Nji and Li,
2010).

Figure 46 Atomic theory equations (see online version for colours)
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The transforming model in Figure 46 uses atomic theory equations to transform natural
environmental conditions (atomic charges and distances) into atomic movements in
atomic structures (Smith and Yen, 2010).

3.2.3 Five acting, responding, or organising models

Figures 47-51 show five acting (speaking, grasping, or moving), responding (generating,
or modifying), or organising (creating, or modifying) models.

The speaking model in Figure 47 uses a speech processing programme to transform
speech into synthesised speech for speaking tasks. The speech processing programme
uses mel-cepstral analysis, a hidden Markov model (HMM) encoder, a hidden Markov
model (HMM) decoder and a mel-log spectrum approximation (MLSA) filter to
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transform and encode speech into pitch, phoneme sequence and state duration vectors or
decode and filter pitch, phoneme sequence and state duration vectors into synthesised
speech for speaking tasks (Tokuda et al., 1998).

Figure 47 A speech processing programme

input Speech

ISRl e s e T , Encoder

(Mel-Cepstral Analysis )

EIC|C2---0---------.--—--.-.--w--a-- ];
X :

- e T
Y

i’hqr}émé ‘Fledégniti.on

.,8.88¢88.89 ,,,,,, |.L_IPhoname Hhus

ial il :
: i 8,80, S
[Pitch| [Phoneme Sequence| [State Durations| 0_88_8_0
E é lil
= '>8-8-8-°
Ial I, o
<3 :

i el gk A
i 7 1/ Parameter Generation
i 1 v 15 Lt S

O Car st s s et rans e s et rnnncaran |}
i

MLSA Filter Decoder

Synthetic Speech

Figure 48 A motion planning programme (see online version for colours)




Digital human models 25

The grasping and moving model in Figure 48 uses a motion planning programme to plan
motions for grasping and moving tasks. The motion planning programme uses search
trees, dynamic programming algorithms and trajectory generation algorithms to plan
motions for grasping and moving tasks (Kuftner et al., 2003).

Figure 49 A bio-signals programme
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The generating model in Figure 49 uses a bio-signals programme to generate
electrocardiograms (ECGs), electromyograms (EMGs) and electrodermal activity signals
(EDAs) for biometric identifications. The bio-signals programme uses stored
electrocardiograms (ECGs), electromyograms (EMGs) and electrodermal activity signals
(EDAs) to generate electrocardiograms (ECGs), electromyograms (EMGs) and
electrodermal activity signals (EDAs) for biometric identifications (van den Broek,
2010).

Figure 50 An ergonomic effects programme (see online version for colours)
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The creating model in Figure 50 uses an ergonomics programme to create ergonomic
models for ergonomic analysis tasks. The ergonomic programme uses personal attributes
(nationalities, genders, weights and statures) to create ergonomic models for ergonomic
analysis tasks (Demirel and Duffy, 2007a, 2007b; Jung et al., 2009; Wu et al., 2011; De
Magistris et al., 2013).

Figure 51 An anthropometrical models programme
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The modifying model in Figure 51 uses an anthropometrical models programme to
modify anthropometrical models for clothing design tasks. The anthropometrical models
programme uses 3D laser scanner measurements and anthropometrical landmarks to
modify anthropometrical models for clothing design tasks (Lu et al., 2010).

4 Conclusions

This study describes digital human models. This study also describes trends in digital
human models, shows that the most important trend in digital human models is integrated
digital human models, shows that integrated digital human models are frameworks and
models and describes frameworks and models that can be used to create digital human
models.

The results show that digital human models are models, programmes, or devices,
theoretical, analytical, or physical models and behavioural, functional, or structural
models which can be used to study, analyse, or duplicate human behaviours, functions, or
structures. The results show that digital human models are integrated or individual
models which consist of frameworks and models or models.

The results can be used to describe, select, or create digital human models. The
results can be used to describe, select, or create integrated models. Therefore, the results
can be used to describe, select, or create frameworks and models. The results can also be
used to describe, select, or create individual models. Therefore, the results can also be
used to describe, select, or create models.
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