Thermal-structure characteristics coupling analysis and optimisation for horizontal CNC machining centre spindle
by Xiaolei Deng; Jianzhong Fu; Zichen Chen
International Journal of Materials and Structural Integrity (IJMSI), Vol. 8, No. 4, 2014

Abstract: In this paper, the thermal-structural coupling field analysis model of spindle system is established, and the numerical simulation which accounts for the spindle component system's structure, the actual working condition, the influence of heat source and lubrication system condition factors, etc. which are from a machine tool factory, such as ambient temperature, flow velocity of coolant, and the rotating speed of spindle motor, etc., is conducted. It is found that the maximum temperature up to about 38.8°C appears in the spindle where the double row cylinder roller bearing is installed, while the maximum comprehensive deformation of the spindle's front-end reaches 0.93 × 10−5 m. And the spindle system needs nearly 1 hour to reach thermal equilibrium state when the system uses the L-HM32 lubricant. However, temperature rise, heat deformation and the thermal equilibrium time are reduced by 11.1%, 22.6% and 12%, respectively, when the lubricant of the lubrication system is replaced by Shell-tellus22, and the maximum Von-Mises stress value is 125.6 MPa. The results are beneficial for providing a basis for the requirements of practical manufacture, especially the optimisation of structure, cooling system and compensation system design.

Online publication date: Sat, 31-Jan-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Materials and Structural Integrity (IJMSI):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com