Design of an adaptive sliding mode controller for robust yaw stabilisation of in-wheel-motor-driven electric vehicles
by Kanghyun Nam; Hiroshi Fujimoto; Yoichi Hori
International Journal of Vehicle Design (IJVD), Vol. 67, No. 1, 2015

Abstract: A robust yaw stability control system is designed to stabilise the vehicle yaw motion. Vehicles undergo changes in parameters and disturbances with respect to the wide range of driving conditions, e.g., tyre-road conditions. Therefore, a robust control design technique is required to guarantee system stability and enhance the robustness. In this paper, a sliding mode control methodology is applied to make vehicle yaw rate to track its reference with robustness against model uncertainties and disturbances. In addition, a parameter adaptation law is also applied to estimate varying vehicle parameters with respect to road conditions and is incorporated into sliding mode control framework. The control performance of the proposed control system was evaluated through field tests.

Online publication date: Mon, 22-Dec-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Design (IJVD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com