Particle deposition and mobilisation during deep bed filtration in oilfields
by Kaiser Aji
International Journal of Oil, Gas and Coal Technology (IJOGCT), Vol. 8, No. 3, 2014

Abstract: Deposition of latex microspheres on a borosilicate filter was carried out at gradually decreasing suspension velocities at conditions favourable for particle attachment and excluding particle retention due to size exclusion. Particle critical retention concentration followed quadratic function of suspension velocity agreeing with the modified particle attachment/detachment model based on mechanical equilibrium of a particle located on the porous matrix surface within experimental uncertainty in the entire range of studied velocities. Electrostatic force is the dominant factor in a strong particle-matrix attraction. Significant part of latex particles were able to overcome a low energy barrier and be trapped irreversibly in the primary energy minimum. The remaining deposited particles were attached in the secondary energy minimum. Due to a strong particle attraction to the surface, their detachment cannot be achieved by increasing fluid velocity only. Almost a fifth of the attached particles were removed after the reduction of salinity and increase in pH of solution. [Received: March 31, 2013; Accepted: July 31, 2013]

Online publication date: Sat, 29-Nov-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Oil, Gas and Coal Technology (IJOGCT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com