Wall temperature considerations in a two-stage swirl non-premixed furnace
by Wayne Strasser; George Chamoun
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 14, No. 6, 2014

Abstract: It is desired to keep the walls of a heat transfer medium (HTM) swirled-burner furnace warm enough to prevent corrosion. A computational study was carried out in order to assess the normal and lowest possible wall temperatures, specifically those of the sheet metal layers making up the outer wall. Various combustion models, radiation parameters, and operating conditions were considered. Field-measured values matched CFD results closely. It was found that the walls were sufficiently warm to prevent corrosion under all reasonable modelling approaches and conceivable operating circumstances. A dramatic computational time savings can be realised by employing a thermal-only solution for certain modelling permutations.

Online publication date: Tue, 25-Nov-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com