

 62 Int. J. Knowledge and Web Intelligence, Vol. 5, No. 1, 2014

 Copyright © 2014 Inderscience Enterprises Ltd.

A RESTful web service to estimating time
requirements for web forms

Ludger Martin
Hochschule RheinMain,
Faculty of Design – Computer Science – Media,
University of Applied Sciences,
Unter den Eichen 5,
65195 Wiesbaden, Germany
E-mail: ludger.martin@hs-rm.de

Abstract: It is important to know whether a website or web application is
usable. What you need are statistics about how the website is used. Such
statistics usually include information about how much time a web user spends
on a web page. But to know whether those dwell times are acceptable you will
need reference values. This paper provides and discusses such reference values
based on a research study. To allow automatic analysis of input elements a web
service is presented to reveal any possible element. Using this service and the
results of our study, any kind of HTML/HTML5 input elements in a web form
can be analysed.

Keywords: web usability; web forms; HTML input elements; RESTful web
services; knowledge extraction.

Reference to this paper should be made as follows: Martin, L. (2014)
‘A RESTful web service to estimating time requirements for web forms’,
Int. J. Knowledge and Web Intelligence, Vol. 5, No. 1, pp.62–75.

Biographical notes: Ludger Martin is a Professor in the Faculty of
Design – Computer Science – Media, at the University of Applied Sciences,
Wiesbaden Rüsselsheim, Germany. His research interests include web
usability, semantic web and data mining.

This paper is a revised and expanded version of a paper entitled ‘Estimating
time requirements for web input elements’ presented at 2nd International
Workshop on Web Intelligence, Angers, France, July 2013.

1 Introduction

Many websites on the internet gather various statistics on their usage. Two of the criteria
that are collected are the time a web user stays on a particular web page (dwell time)
and information on which web pages the user visits. Analysis of the collected data can
provide an indication on whether the website is well designed or not. To perform this
analysis, it is essential to know whether particular dwell times should be considered good
or bad.

 A RESTful web service to estimating time requirements for web forms 63

This paper aims to provide criteria for more precision in assessing dwell times by
examining HTML and HTML5 input elements. A survey shall help to estimate the time it
will take a user to fill in a form on a web page. Statistics about the various types of input
elements will be created. It is our aim to enable an automatic estimation of the average
time it will take users to fill in any web form. Therefore a RESTful web service is
presented. This web service determines all input elements on a single web page. Using
this data, possible dwell times for any web form can be calculated.

The time required for filling in forms can then be supplemented with further values
obtained about a web page. For example, the quantity, the readability and the main
subject of a text, as presented in Martin (2010, 2012). All of this information as a whole
will help to understand the statistics about a website. The main goal is to find
automatically problems in the usability of a web page.

The remainder of this paper is structured as follows: in Section 2 the study and the
questionnaire used will be presented. Then, in Section 3 the results of the study are
discussed. Section 4 demonstrates the application of the results related to a real form. A
web service to automate this process is introduced in Section 5. After presenting related
work in Section 6 we conclude the paper with an outlook on future work.

2 Survey questionnaire

An online questionnaire has been compiled for this study. Test persons are asked to input
their answers to the various questions into the questionnaire. While they are filling in the
form, a JavaScript records the time the test persons spent on each question. To make the
time measurement more informative, the questions that are not currently dealt with are
greyed out. This method ensures that the test persons can read and answer only one
question at a time. It is the test persons’ decision whether they want to use a desktop
browser or a mobile browser. Environmental factors such as where and under which
circumstances the test persons access the website, were not analysed.

The questions do not require much contemplating, e.g., the first question asks the
users to describe what they did after getting up in the morning. This is followed by a
choice of seven radio buttons about how the test persons came to work that day. Then
they are asked to enter their favourite food in a single-line text field. Additionally,
statistical data is maintained about the person’s gender using three radio buttons. The
next question asks for another piece of text. This time, a word from the title of a book is
to be entered. As a rule, the type of input element is never the same as the one directly
before. The next four questions use check boxes. A further statistical question has the
form of a select field. Here, age ranges are chosen. Six lines are displayed at the same
time. If users want to enter an age older than 34, they must scroll. The effect of scrolling
will be described in greater detail later on. In the next field, the date of the day before is
required. If the browser supports HTML5, the appropriate HTML5 date field will be
displayed, if not, a simple text field. In our analysis we will look at these differences in
greater detail. If the browser supports them, the colour field and the range field will also
be displayed. The form is completed with a simple submit button.

The other new HTML5-elements such as number, url or e-mail are just short text
fields and are therefore not considered separately in this study.

 64 L. Martin

3 Analysis

In January and February, 2013, a total of 80 test persons participated in the study. The
diagrams below show in round brackets the number of test persons who have filled in a
particular input field. The differing numbers are due to the fact that not all test persons
filled in all of the input fields and, depending on the browser, not all of the HTML5 input
elements were displayed. In the following examinations only the values of the test
persons who used a desktop browser were analysed.

Figure 1 shows the input elements which can be selected using the mouse or the
keyboard. The four check boxes together required an average time of 15.4 s. Compared
with the three radio buttons about gender, we note that these could be answered much
faster (5.8 s). Even the seven radio buttons took less time. The reason for this is that each
check box requires an individual answer while the radio buttons belong together. But the
time required to deal with a group of radio buttons depends on the number of group
elements. The select field for the person’s age is similar to the radio buttons, as it
required a similar amount of time. Entirely different is the range field. Here, a user is to
choose a predefined value. This field seems to pose most of the problems as it requires an
average time of 13.3 s. To facilitate applying the characteristic numbers to a form you
want to analyse, we have recalculated the numbers for the individual elements also. For
example, it takes 3.0 s to deal with a check box. Figure 1 also shows that the standard
deviation varies considerably. We will look at this in greater detail later in this section.

Figure 1 Selection input elements (see online version for colours)

 A RESTful web service to estimating time requirements for web forms 65

Now we will take a closer look at the select field. Figure 2 relates the time with the
options chosen. At the same time, the options represent the test persons’ ages. The first
options show similar times and standard deviations. Only starting with option ‘35–39’
does it become necessary to scroll down. This shows that if more scrolling was necessary
the required time increased considerably. The increase in time might be explained by the
higher age of the test person. But admittedly not many senior persons participated in the
study and therefore these values must be used with caution.

Figure 2 Selection and scrolling (see online version for colours)

In the second part of Figure 2 we have tried to create a formula for select field usage. For
choosing an option without scrolling we assumed 5.6 s. For each line that must be
scrolled we have added 2.3 s. Figure 2 shows this using the age list as an example, where
quite a good approximation can be seen. We have allowed extra time for the standard
deviations as well.

Next we will look at the three elements which require text entry using the keyboard.
The date field is left out as no normal text is entered there. The angle brackets in Figure 3
specify the average numbers of letters that were input. The times refer to one character
each. Interestingly, the question about a person’s favourite food was answered more
quickly than the question about a word from the title of a book. The test persons
obviously thought longer about the second question. Another observation was that longer
pieces of text can be entered significantly quicker.

 66 L. Martin

Figure 3 Text input elements (see online version for colours)

Before that, larger standard deviations had been noted. These are now compared to the
test persons’ ages. Figure 4 shows minor standard deviations within the age ranges. The
larger values were created by the senior test persons (60 or 70 and older) as also observed
in Figure 2. If you know the age of a website’s target group, then only the average values
for this age group are to be used. This paper continues to look at all age groups.

Figure 4 Effect of age (see online version for colours)

 A RESTful web service to estimating time requirements for web forms 67

After examining the age, now we want to look at the gender. In addition to the check
boxes and the text area, Figure 5 lists three age groups with the majority of test persons.
Notably, with the female test persons there were fewer standard deviations. This may be
due to the fact that fewer women participated in the survey. Hardly any difference can be
seen between the female and male test persons at least in the age groups ‘20–24’ and ‘30–
34’. The big difference in the text area of the age group ‘25–29’ may be explained by the
small number of test persons.

Figure 5 Effect of gender (see online version for colours)

One novelty in HTML5 standard is, among others, an input field for a date. In Figure 6,
this date field is compared to a field where the date must be typed in. The date field
includes a calendar from which the date can be chosen. With two clicks you can select a
date. In a text field, however, ten characters must be entered. Figure 6 shows this extra
effort. Date fields are about double as efficient as a text field where the date must be
entered. Another new HTML5 is the colour field. An average time of 13.5 s could be
determined for that field. However, only three people filled in this field.

So far we have only evaluated data for desktop browsers. Figure 7 compares the test
persons who used a mobile browser to those who used a desktop browser. Out of the
80 test persons, 12 persons used mobile devices. Out of these, seven persons used smart
phones. In a test prior to this study, the presentation of the form on desktop browsers was
compared to the presentation on mobile browsers. The elements were arranged
identically. Just the size of the form itself was different. For date fields or colour fields no
data was available. Apart from the range field there were no big differences. The range
field had already been different in desktop browsers and this proved even more true using

 68 L. Martin

mobile browsers. This makes us question the usability of the range field. Text fields
hardly showed any differences. With longer texts the time spent per character was
slightly more. This can be explained by the fact that typing on mobile devices is less
convenient.

Figure 6 Comparison of date and text input (see online version for colours)

Figure 7 Comparison desktop/mobile (see online version for colours)

 A RESTful web service to estimating time requirements for web forms 69

The form is sent off using the submit button. We did not examine these buttons as they
are only pressed once to submit the form. Measuring time is hardly possible, especially as
every form is submitted using this button and users do not spend much time on this kind
of button.

Table 1 shows a summary of all times we ascertained. We calculated only one value
for all of the check boxes and one for all of the radio buttons. For mobile browsers we
could not determine values from scrolling a select field, as too few participants were
available. For the texts, as before, we only specified the input times for one character. As
mentioned before, we did not investigate the environmental factors of the test persons. In
general, when analysing web statistics it is not possible to detect the users environment.
The times shown in Table 1 shall be used to estimate the time it will probably take to fill
in an entire form.
Table 1 Selection and scrolling

 Desktop Mobile

Check 3.84 s 3.54 s
Radio 1.60 s 1.97 s
Select 5.76 s 10.60 s
Select scroll 1.30 s -
Range 13.28 s 28.96 s
Short text 2.12 s 1.97 s
Text area 0.99 s 1.49 s
Date 6.90 s -
Colour 13.50 s -

4 Case study

In this case study, an order form of a small web page is analysed. The input fields of the
form are shown in Table 2. Some of the input fields are optional, some required. The
specified times represent users of a desktop browser and are calculated related to Table 1.
The calculation related to short text fields observe the following rules:

• If the attributes size and maxlength are equal, it will be assumed that exactly
size character need to be specified.

• If the attributes size and maxlength are different, it will be assumed that the size
of the input field is as big as the most common entries. But the entries might vary in
length. Therefore, the calculation uses 50% of the characters specified in the size
attribute.

In our study the test persons (see three-typed an average of 40 characters in a text area.
The same amount is used in this form.

 70 L. Martin

Two different sums are specified. The first is the sum of all required fields. This
specifies the minimum time an average user should need to fill in the form. The second
sum relates to all input fields. This sum specifies the maximum time.
Table 2 Time estimation

Element Size Max Required Time calculation = total time

Radio 10 - Yes 10 ∗ 1.60 s = 16.00 s
Text 10 10 Yes 10 ∗ 2.12 s = 21.20 s
Text 10 10 Yes 10 ∗ 2.12 s = 21.20 s
Text 5 5 No 5 ∗ 2.12 s = 10.60 s
Text 40 60 Yes 20 ∗ 2.12 s = 42.40 s
Text 40 60 No 20 ∗ 2.12 s = 42.40 s
Text 40 60 No 20 ∗ 2.12 s = 42.40 s
Text 40 60 No 20 ∗ 2.12 s = 42.40 s
Text 40 60 Yes 20 ∗ 2.12 s = 42.40 s
Check - - No = 3.84 s
Check - - No = 3.84 s
Radio 3 - No 3 ∗ 1.60 s = 4.80 s
Text area 60 × 5 - No 40 ∗ 0.99 s = 39.60 s
Check - - No = 3.84 s
Check - - No = 3.84 s
Check - - No = 3.84 s
Check - - No = 3.84 s
Text 40 60 No 20 ∗ 2.12 s = 42.40 s
Check - - Yes = 3.84 s
 Sum required = 147.04 s
 Sum all = 394.68 s

To justify these sums, the web page was analysed for 1
23 month. During this period,

18 users filled in this form using a desktop browser. The dwell times of these users are
presented in Figure 8. The vertical bar represents the time window between the minimum
and maximum time. Only three users needed more than the specified time. One of them
needed far too much time. Reasons for this might be that the form was too complicated,
the user was disturbed by something, etc. The users who were faster might be expert
users surfing the web. Expert users are faster making use of the browser. Unfortunately
we did not ask the user about their experience. Altogether, the users dwell times fit very
well in the time window.

 A RESTful web service to estimating time requirements for web forms 71

Figure 8 Time users spent on form (see online version for colours)

5 RESTful web service

To retrieve all input elements on a web page, a RESTful web service has been developed.
As input the web service receives the HTML content of every single web page. This
HTML content is analysed and a JavaScript Object Notation (JSON) structure is
generated. According to Richardson and Ruby (2007), our web service represents an
algorithm. An algorithm has to use the HTTP method POST and receives the data, in our
case the HTML content of one web page, in the POST body of the HTTP request.
Parameters have to be specified in the URI. In our case we do not need any parameters.
The result is included in the POST body of the HTTP answer. In our case it is a JSON
structure.

Now the functionality of the web service is presented. The service uses the PHP
Simple HTML DOM Parser library (Chen, 2013) to parse the HTML content of a web
page submitted in the POST-body. The library offers a method to find elements of a
specified type. Using this method all elements for any input (<input>, <select>, and
<textarea>) are iterated. During this process all interesting attributes are recorded.
The result is a JSON structure containing all elements for any input including their
attributes.

A JSON extract of the web page analysed in Section 4 is shown in Figure 9.
The first two input elements represent single line text elements. The attributes
size and maxlength are particularly interesting. The others represent two check
boxes.

 72 L. Martin

Figure 9 Extract of the JSON answer

{

 ”text”:[
 {“id”:”startdate”,”type”:”text”,”name”:”start”,
 “size”:”10”,”maxlength”:”10”,”value”:”“},
 {“id”:”enddate”,”type”:”text”,”name”:”end”,
 “size”:”10”,”maxlength”:”10”,”value”:”“},
 ...],

 “checkbox”:[
 {“id”:”flowers”,”type”:”checkbox”,”name”:”flowers”,
 “value”:”flowers”},
 {“id”:”heart”,”type”:”checkbox”,”name”:”heart”,
 “value”:”heart”},
 ...]

 ...

}

The reason for using a RESTful web service is that the service can be used
as a plugin in a crawler application. The crawler traverses a whole website and uses the
web service to get specific information on every single web page. One part of the
information are the containing input elements. More can be found in the future work in
Section 7.

6 Related work

Similar calculations are done by Oyewole and Haight (2011). They analyse users trying
to access or navigate a website. Their goal is to develop a guidance technique to assist
users. The path users take within a website is calculated using the GOMS model
(goals, operations, methods, selection), resp. the Card, Morgan, Newell – GOMS (CMN-
GOMS) (Card et al., 1986). Tasks done by users are stripped down into simple activities.
These activities are investigated and required times are assigned. Oyewole and Haight
uses the times specified in Table 3.

It is interesting to look at the form used in our case study (see Section 4 using the
GOMS model. Table 4 shows the calculation related to Table 3. Every action needs at
least one mental act. The radio buttons need more mental acts. The reason are the
different descriptions assigned to the buttons. A motion of the hand and a click with the
mouse button is also necessary. In contrast to our model the GOMS model does not
differentiate between short and long texts. In general, all calculations show higher values.
Only a check box is about twice as fast. Related to our form the time needed for all
required fields is ca. 9.3% higher than in our model. Both results are similar.

 A RESTful web service to estimating time requirements for web forms 73

Table 3 GOMS activities and times

Activity (short cat) Time

Keystroke (K) 0.28 s
Type a sequence of n characters on a keyboard (T) n ∗ 0.28 s
Point with mouse to a target on the display (P) 1.1 s
Press or release mouse button (B) 0.1 s
Click mouse button (BB) 0.2 s
Home hands to keyboard or mouse (H) 0.4 s
Mental act of routine thinking or perception (M) 1.35 s
Waiting for the system to respond time (R) 0.1 s

Table 4 Time estimation with GOMS model

Element Size Max Required Time calculation = total time

Radio 10 - Yes 10 ∗ M + H + BB = 14.10 s
Text 10 10 Yes M + H + BB + 10 ∗ T = 24.75 s
Text 10 10 Yes M + H + BB + 10 ∗ T = 24.75 s
Text 5 5 No M + H + BB + 5 ∗ T = 13.35 s
Text 40 60 Yes M + H + BB + 20 ∗ T = 47.55 s
Text 40 60 No M + H + BB + 20 ∗ T = 47.55 s
Text 40 60 No M + H + BB + 20 ∗ T = 47.55 s
Text 40 60 No M + H + BB + 20 ∗ T = 47.55 s
Text 40 60 Yes M + H + BB + 20 ∗ T = 47.55 s
Check - - No M + H + BB = 1.95 s
Check - - No M + H + BB = 1.95 s
Radio 3 - No 3 ∗ M + H + BB = 4.65 s
Text area 60 × 5 - No M + H + BB + 40 ∗ T = 93.15 s
Check - - No M + H + BB = 1.95 s
Check - - No M + H + BB = 1.95 s
Check - - No M + H + BB = 1.95 s
Check - - No M + H + BB = 1.95 s
Text 40 60 No M + H + BB + 20 ∗ T = 47.55 s
Check - - Yes M + H + BB = 1.95 s
 Sum required = 160.65 s
 Sum all = 471.75 s

Now we present related studies which deal with web usability and web statistics in
general.

Atterer et al. (2006) built a system to track all user interactions with a browser page
including mouse pointer, text input, and page scrolling. Similar to our approach, the
interaction is tracked by a JavaScript but the data is transmitted using an image object.
The web pages are modified automatically by a proxy server to enable the tracking. The

 74 L. Martin

proxy server also protocols the usage data. The mouse-over event is recorded for every
HTML element in the same way as in our study.

The tool Wusab is presented in Atterer (2008). Atter claims that automated usability
validation is one of Wusab’s features. During the website development the validation
runs at regular intervals. In our tool the usability is checked on the request of the usability
engineer. The Wusab tool downloads and analyses HTML code. The analysis is done
using guidelines such as images should have alt text. Our tool also analyses the web page
but offers more complex criteria such as the input elements used, readability (Martin,
2010), or subject (Martin, 2012).

Another tool is Google Analytics (2013) which is very powerful analysis tool. It
works with its own database, whereby statistics can be provided independently of the web
server used. The integration into a web application is done using JavaScript. The tool
collects various items of information and sends them to the database by loading an
invisible picture. Whereas Google Analytics provides many different statistics concerning
users, sources, contents and goals, no information, however, is available on the visiting
paths of the users. Furthermore, Google Analytics does not analyse the website itself.

7 Summary and future work

In this paper, we presented a method to estimate time requirements related to web forms.
The goal was to find out the amount of time a normal user needs to fill in a form on a
web page. First we presented a study. We examined how long it takes test persons to fill
in single input elements of a form on a web page. The times spent by 80 persons to fill in
the input fields were discussed in detail. As a result, Table 1 has been created. In
Section 6 we demonstrated that our results are similar to these of the GOMS model. We
believe that our model is more easy to use. In the study 80 persons were observed. To
address a special group of users, e.g., older people, the study must be expanded. Right
now we do not have enough persons to generate conclusions on special groups. Apart
from that the results are fine.

To demonstrate the estimation of the average time needed by one user to fill in any
web form a case study was presented. A form of a small website was analysed and a time
window was calculated. This time window was evaluated in respect to real usage data.

In addition, a RESTful web service to automate the analysis of a web page was
presented. The web service records all input fields. This web service supplements a set of
services which analyse, e.g., the readability or the main subject of a web page. All these
web services are used by a crawler which allows to automatically traverse a complete
website. The result are measurements (see Martin, 2010) to classify the content of a
website.

In Martin (2009), we presented a tool which can be used to analyse how people use a
website. This tool is able to recognise paths that a single user or groups of users have
taken. Additionally, the tool determines the corresponding dwell times. These dwell times
can be validated by calculating the times described above for the forms offered.

Our next aim is to figure out whether it is possible to determine usability problems
automatically. The measurements to classify the content of a website and the real usage
data have to be investigated. Using semantic web technologies it should be possible to
locate usability problems within a website.

 A RESTful web service to estimating time requirements for web forms 75

References
Atterer, R. (2008) ‘Model-based automatic usability validation – a tool concept for improving

web-based UIs’, in Proceedings of the 5th Nordic Conference on Human-computer
Interaction: Building Bridges, pp.13–22, ACM, New York, NY, USA.

Atterer, R., Wnuk, M. and Schmidt, A. (2006) ‘Knowing the user’s every move – user activity
tracking for website usability evaluation and implicit interaction’, in WWW ‘06: Proceedings
of the 15th International Conference on World Wide Web, pp.203–212, ACM, New York, NY,
USA.

Card, S.K., Moran, T.P. and Newell, A. (1986) The Psychology of Human-Computer Interaction,
Lawrence Erlbaum Associates, Hillsdale, NJ, USA.

Chen, S.C. (2013) PHP Simple HTML DOM Parser, Technical report [online]
http://simplehtmldom.sourceforge.net/ (accessed 23 October 2013).

Google (2013) Google Analytics [online] http://www.google.com/analytics/
(accessed 23 October 2013).

Martin, L. (2009) ‘A tool to estimate usability of Web 2.0 applications’, in 11th IEEE International
Symposium on Web Site Evolution, September.

Martin, L. (2010) ‘Gathering information about Web 2.0 applications for usability engineering’,
in Seventh International Conference on the Quality of Information and Communications
Technology, pp.482–486, September.

Martin, L. (2012) ‘Subject classification of web pages’, in IADIS International Conference
WWW/Internet, pp.298–306, October.

Oyewole, S.A. and Haight, J.M. (2011) ‘Determination of optimal paths to task goals using expert
system based on Goms model’, Comput. Hum. Behav., March, Vol. 27, No. 2, pp.823–833.

Richardson, L. and Ruby, S. (2007) RESTful Web Services, O’Reilly, Sebastopol, CA, USA.

