An improved differential evolution algorithm for enhancing biochemical pathways simulation and production
by Chuii Khim Chong; Mohd Saberi Mohamad; Safaai Deris; Mohd Shahir Shamsir; Afnizanfaizal Abdullah
International Journal of Data Mining and Bioinformatics (IJDMB), Vol. 10, No. 4, 2014

Abstract: This paper presents an Improved Differential Evolution (IDE) algorithm to improve the kinetic parameter estimation in simulating the glycolysis pathway and the threonine biosynthesis pathway. Experimentally derived time series kinetic data are noisy and possess many unknown parameters. These characteristics of kinetic data cause lengthy computational time to compute the optimum value of the kinetic parameters. To solve this problem, this study had been conducted to develop a hybrid method that combined the Differential Evolution algorithm (DE) and the Kalman Filter (KF) to produce IDE. Results have shown that lesser computation time (6% and 18.5% faster) and more robust to noisy data with significant reduced error rates (93% and 79% reduced error rates) compared with the Genetic Algorithm (GA) and DE, respectively, in glycolysis and threonine biosynthesis pathway simulations. IDE is reliable as it demonstrated consistent standard deviation values which were close to mean values. We foresee the applicability of IDE into other metabolic pathway simulations.

Online publication date: Tue, 21-Oct-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining and Bioinformatics (IJDMB):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com