FDTD simulation of the acoustic interaction between a cavity and an adaptive Helmholtz resonator
by Tim Bastian Klaus; Oliver Heuss; Christian Thyes; Holger Hanselka
International Journal of Computational Science and Engineering (IJCSE), Vol. 9, No. 5/6, 2014

Abstract: Helmholtz resonators are used to manipulate the eigen behaviour of the acoustic fluid in a cavity. Using the analogy to a mass damper, it is possible to tune the resonators' eigen frequency by handling the resonator volume as spring and the resonator neck as mass of a vibration absorber. Simulating the transient interaction of the HR with the acoustic sound field in a cavity in terms of active sound control, a high simulation performance is demanded. This can be provided by the finite difference time domain method. The simulations are performed with respect to the LOEWE-Zentrum AdRIA acoustics demonstrator. It depicts the abstraction of a real room. Therefore, it consists of six sound reflecting walls that are implemented through acoustic impedances in the time domain. The semi-passive system is implemented using MATLAB/Simulink. In addition, the simulations are validated applying an adaptive Helmholtz resonator inside the acoustic fluid of the acoustics demonstrator.

Online publication date: Mon, 22-Sep-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computational Science and Engineering (IJCSE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com