Exergy analysis of a two-stage refrigeration cycle using two natural substitutes of HCFC22
by Ahmed Ouadha, Mohammed En-nacer, Lahouari Adjlout, Omar Imine
International Journal of Exergy (IJEX), Vol. 2, No. 1, 2005

Abstract: The aim of the present paper is to carry out a detailed exergy analysis of a two-stage vapour compression cycle by calculating its components exergetic losses. The exergy equations have been developed using refrigerant thermodynamic properties computed by means of a simple model of local equations of states. The results of the exergy analysis of a two-stage refrigeration system operating between a constant evaporating temperature of -30°C and condensation temperatures of 30, 40, 50 and 60°C with two natural substitutes of HCFC22, namely, propane (R290) and ammonia (R717) as working fluids, are presented. It is found that the most significant losses occur in the compressors, expansion valves and condenser. Furthermore, it is shown that the optimum inter-stage pressure for a two-stage refrigeration system is very close to the saturation pressure corresponding to the arithmetical mean of the refrigerant condensation and evaporation temperatures.

Online publication date: Tue, 08-Mar-2005

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Exergy (IJEX):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com