Risk assessment of gaseous emissions from municipal solid waste landfill: case study Rafah landfill, Palestine
by Ahmad A. Foul; Mazen Abualtayef; Basel Qrenawi
International Journal of Environment and Waste Management (IJEWM), Vol. 14, No. 2, 2014

Abstract: This article describes the risk assessment of gaseous emissions from the municipal solid waste at Rafah landfill, Palestine. In this study, Gas-Sim model was used to quantify the gaseous emissions from the landfill and the Land-Gem model was used to verify the results. Risk assessment of both carcinogens and non-carcinogens were performed. Two scenarios were conducted namely with plant uptake and without plant uptake. The scenario with plant uptake revealed that the risk to residents is acceptable for non-carcinogens (risk value 0.45 > 1.0), while the risk to residents is not acceptable for carcinogens (risk value 2.69 × 10−6 < 10−6). The scenario without plant uptake revealed that the risk to residents is acceptable for non-carcinogens (risk value 0.42 > 1.0), while the risk to residents is acceptable for carcinogens (risk value 2.855 × 10−7 > 10−6).

Online publication date: Sat, 30-Aug-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Environment and Waste Management (IJEWM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com