Simulation and performance analysis of superstrate Cu(In,Ga)Se2 solar cells using nanostructured Zn1−xVxO thin films
by Kamal Djessas; Idris Bouchama; Kahina Medjnoun; Abdesselam Bouloufa
International Journal of Nanotechnology (IJNT), Vol. 11, No. 9/10/11, 2014

Abstract: In this paper, we describe in the first step the structural, electrical and optical properties of the nanostructured Zn1−xVxO thin films deposited on glass substrates by rf-magnetron sputtering using aerogel nanoparticles synthesised by the sol-gel method. The best properties, satisfying the role of window and buffer layers, were achieved, respectively, for the films of Zn0.99V0.01O elaborated at room temperature and Zn0.80V0.20O at 200°C. In the second step, the nanostructured Zn0.99V0.01O and Zn0.80V0.20O layers are, respectively, proposed as alternative to the traditional (ITO) window and (CdS) buffer layers and tested numerically in Cu(In,Ga)Se2 (CIGS) solar cell using one-dimensional AMPS-1D device simulator. The influence of physical and geometrical parameters of the p-type CIGS absorber layer on the performance of the superstrate SLG/(n+)Zn0.99V0.01O/(n)Zn0.80V0.20O/(p)Cu(In,Ga)Se2/Mo solar cell was investigated. The calculations assume fixed Zn1−xVxO input parameters. The carrier concentration and thickness of the absorber layer were found to be a key factor, affecting the solar cell performance. On the basis of the simulation results, a short-circuit current density of about 33 mA/cm2 has been obtained for 4 μm-CIGS solar cell using n-type Zn0.80V0.20O buffer layer for 100 nm thick. It is also found that a conversion efficiency of more than 19% AM 1.5 G could be expected for more than 3 μm absorber thickness and acceptor concentration varying between 2 × 1016 and 1017 cm−3. From the results obtained, we suggest the use of Zn0.80V0.20O and Zn0.99V0.01O as a buffer and window layers, respectively, to achieve high-efficiency CIGS solar cells with better photovoltaic parameters.

Online publication date: Wed, 14-Jan-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanotechnology (IJNT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com