Material parameter optimisation of Ohno-Wang kinematic hardening model using multi objective genetic algorithm
by Niloy Khutia; Partha Pratim Dey
International Journal of Computational Materials Science and Surface Engineering (IJCMSSE), Vol. 6, No. 1, 2014

Abstract: Ohno-Wang hardening model is an advanced constitutive model to evaluate the cyclic plasticity behaviour of material. This model has capability to simulate uniaxial and biaxial ratcheting response of the material. But, it is required to determine large number of material parameters from several experimental responses in order to simulate this phenomenon. Material parameters for constitutive models are generally determined manually through trial and error approach which is tedious and less accurate. Due to arbitrariness and complexity of cyclic loading, advanced constitutive material models become non-linear and multimodal in functional and parameter space. To overcome this problem, an automated parameter optimisation approach using genetic algorithm has been proposed in the present work to identify Ohno-Wang material parameters of 304LN, stainless steel for uniaxial simulation. Optimisation by this approach has improved the model prediction in uniaxial low cycle and ratcheting fatigue simulations after comparison with the experimental response.

Online publication date: Wed, 30-Jul-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computational Materials Science and Surface Engineering (IJCMSSE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com