The method of virtual power in a micromorphic theory of ductile fracture in metals
by Koffi Enakoutsa
International Journal of Theoretical and Applied Multiscale Mechanics (IJTAMM), Vol. 2, No. 4, 2013

Abstract: We use the method of virtual power to rigorously establish the balance equations and boundary conditions in the context of a micromorphic theory developed by Gologanu, Leblond, Perrin and Devaux (GLPD) to solve the pathological mesh size effects in numerical simulations of problems involving ductile rupture. As an example, we derive these equations for the problem of circular bending of a beam deformed in plane strain. Also, we provide links between the outcome of the method and the micromorphic theory of Germain. In particular, we show that, with a minor modification, the modified GLPD theory, which can easily fit into a finite element subroutine, is equivalent to Germain micromorphic theory. The paper ends with some comparisons with the general second gradient theory.

Online publication date: Sat, 05-Jul-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Theoretical and Applied Multiscale Mechanics (IJTAMM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com