A force-based suspension modelling approach for vehicle steady-state handling
by J.M. D'Souza, J.M. Starkey
International Journal of Vehicle Design (IJVD), Vol. 19, No. 2, 1998

Abstract: This paper presents a modelling procedure for predicting steady-state cornering behaviour of four-wheeled vehicles. The method retains the simplicity and insightfulness of the traditional Kinematic Roll Centre approach, but requires less input data than multi-body simulations using commercial computer programs. The core concept of the method is to model the suspension at each wheel with its equivalent swing-arm by identifying the instant centre between each wheel and the chassis. Then, tyre contact patch forces can be decomposed into two force components, one normal to this swing arm which causes suspension deflection, and the other along the swing arm which transfers directly to the chassis. Using these force components, true chassis positions can be resolved, and accurate tyre forces predicted. The key advantages of this approach are (1) the contribution of lateral loads to chassis heave is included, (2) a more accurate load transfer prediction results, (3) higher-order tyre effects, such as camber thrust, can be included, and (4) accurate predictions are possible at high Levels of lateral acceleration. Significant insight into suspension behaviour also results from studies using this approach. The method presented in this paper is compared with the traditional Kinematic Roll Centre approach, and the effects of suspension design on chassis roll and heave are discussed.

Online publication date: Thu, 29-May-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Design (IJVD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com