Synthesis, characterisation and gas sensing application of nano ZnO material
by M.K. Deore; G.H. Jain
International Journal of Nanoparticles (IJNP), Vol. 7, No. 1, 2014

Abstract: Zinc oxide (ZnO) nanomaterial was synthesised by hydrothermal method. The formation of ZnO nanoparticles were confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and UV studies. XRD analysis confirmed the powder to be ZnO with wurtzite structure, with crystallite size ranging from 5 to 25 nm. Observation from TEM images confirmed that the grains were nearly hexagonal rod type in nature with sizes from 22 to 56 nm. The thick films of nano ZnO were prepared by screen-printing technique in desired pattern. The surface morphology of the films was studied by scanning electron microscopy (SEM). The gas sensing performance of the materials have been investigated for various interfering gases such as CO, Cl2, NH3 and H2S etc at operating temperature varying from 50°C to 400°C. The results indicate that the nano ZnO material thick film showed much better gas response than the usual ZnO materials to H2S gas (100 ppm) at 250°C. The nanoshaped hexagonal rod would improve the sensitivity and selectivity of the sensors. The selectivity, response and recovery time of the sensor were measured and presented. ZnO nanomaterial is excellent potential candidates for gas sensors.

Online publication date: Mon, 30-Jun-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanoparticles (IJNP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com