Modelling fluid flow over solid surfaces
by Harry Gingold
International Journal of Modelling, Identification and Control (IJMIC), Vol. 21, No. 3, 2014

Abstract: Models of fluid flow over solid surfaces are proposed. The models utilise a varying viscosity that is constant away from a solid surface and that becomes infinite as the solid surface is approached. The varying viscosity introduces an inner boundary layer. Consequently, we are able to explain, qualitatively, the discrepancy between theoretical predictions of the conventional theory of fluid flow with experimental data of flow over a flat plate with distributed roughness. Our model also explains the discrepancy between an increased amount of drag observed in some experiments and a theoretical predicted drag from Newtonian fluids with a constant viscosity. Couette flow over a rough surface is utilised to demonstrate the underlining nature of the modelling. Arguments for the consistency of our models are provided.

Online publication date: Sat, 07-Jun-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Modelling, Identification and Control (IJMIC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com