Photocatalytic H2 production from ethanol over Au/TiO2 and Ag/TiO2
by Vedran Jovic; Pei-Huan Hsieh; Wan-Ting Chen; Dongxiao Sun-Waterhouse; Tilo Söhnel; Geoffrey I.N. Waterhouse
International Journal of Nanotechnology (IJNT), Vol. 11, No. 5/6/7/8, 2014

Abstract: This paper compares the photocatalytic activities of Au/TiO2 (Au loadings 0-4 wt.%) and Ag/TiO2 photocatalysts (Ag loadings 0-4 wt.%) for H2 production from ethanol-water mixtures under UV irradiation. Au and Ag nanoparticles were deposited on commercially available Degussa P25 TiO2 (85% anatase, 15% rutile) using deposition-precipitation and liquid impregnation methods, respectively. TEM analyses showed the average noble metal nanoparticle size to be ~5 nm for the Au/TiO2 photocatalysts and ~3 nm for the Ag/TiO2 photocatalysts. Au/TiO2 photocatalysts showed a strong localised surface plasmon resonance (LSPR) at 570 nm characteristic for nanocrystalline Au. Complementary XRD studies confirmed that Au and Ag nanoparticles were present in metallic form. Photoluminescence measurements revealed that Au and Ag nanoparticles effectively suppress electron-hole recombination in TiO2, thereby enhancing the photocatalytic activity of TiO2 for hydrogen production. Au/TiO2 photocatalysts were far more active for H2 production from ethanol-water mixtures than Ag/TiO2 photocatalysts. A 1 wt.% Au/TiO2 photocatalyst yielded the highest H2 production rate (34 mmol g−1 h−1). Amongst the Ag/TiO2 photocatalysts, the 2 wt.% Ag/TiO2 sample was the most active (3.7 mmol g−1 h−1). Results are rationalised in terms of differences in the electronic properties of supported Au and Ag nanoparticles, with the former being near ideal for H2 production.

Online publication date: Tue, 16-Dec-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanotechnology (IJNT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com