A radial basis function network approach to approximate the inverse kinematics of a robotic system
by Bach H. Dinh; Matthew W. Dunnigan; Zool H. Ismail
International Journal of Modelling, Identification and Control (IJMIC), Vol. 21, No. 2, 2014

Abstract: This paper presents a novel solution using a radial basis function network (RBFN) to approximate the inverse kinematics of a robotic system where the geometric parameters of the manipulator are unknown. Simulation and experimental results are presented for a three-link manipulator to demonstrate the effectiveness of the proposed approach. To achieve this level of performance, centres of hidden-layer units are regularly distributed in the workspace, constrained training data is used where inputs are collected approximately around the centre positions in the workspace and the training phase is performed using either strict interpolation or the least mean square algorithm. These proposed ideas have significantly improved the network's performance.

Online publication date: Sat, 07-Jun-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Modelling, Identification and Control (IJMIC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com