Effect of trap depth and interfacial energy barrier on charge transport in inverted organic solar cells employing nanostructured ZnO as electron buffer layer
by Naveen Kumar Elumalai; Chellappan Vijila; Rajan Jose; Zhang Jie; Seeram Ramakrishna
International Journal of Nanotechnology (IJNT), Vol. 11, No. 1/2/3/4, 2014

Abstract: Inverted organic solar cells with device structure ITO/ZnO/poly (3-hexylthiophene) (P3HT):[6,6]-phenyl C61 butyric acid methyl ester (PCBM)/MoO3/Ag were fabricated employing low temperature solution processed ZnO as electron selective layer. Devices with varying film thickness of ZnO interlayer were investigated. The optimum film thickness was determined from photovoltaic parameters obtained from current-voltage measurements. Furthermore, the distribution of localised energy states or trap depth and the ohmicity of the contacts in the optimised device were evaluated, using the temperature and illumination intensity dependent study. The results demonstrate the effect of trap depth distribution on the charge transport, device performance, and stability of the contacts.

Online publication date: Sat, 15-Nov-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanotechnology (IJNT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com