Thermo-catalytic degradation of low density polyethylene to liquid fuel over kaolin catalyst
by Achyut Kumar Panda; Raghubansh Kumar Singh
International Journal of Environment and Waste Management (IJEWM), Vol. 13, No. 1, 2014

Abstract: Waste low-density polyethylene samples were subjected to thermo-catalytic degradation using kaolin as catalyst in a batch reactor at temperature range of 400 to 500°C and atmospheric pressure. The quality and yield of the condensable product has been studied as a function of temperature and amount of catalyst. Both in thermal and catalytic degradation, the condensable fraction was less viscous liquid oil at low temperatures (up to 450°C), whereas with increase of temperature (from 475°C) the fraction became viscous and waxy. The recovery of condensable fraction increased from 30.8 wt.% at 400°C to 71.45% at 450°C and further increased to a maximum of 86.65wt.% at 500°C in absence of catalyst. The catalyst increased the yield of the condensable product and decreased the reaction time. The highest yield of liquid fraction at 450°C was 79.5 wt.% with 1:2 catalyst to plastics ratio. The composition of the oil obtained at optimum reaction condition was characterised by gas chromatography-mass spectroscopy (and found consisting of paraffins and olefins with mainly C10-C16 components. Fuel properties of the oil obtained by different standard methods are similar to petrochemical fuels.

Online publication date: Tue, 13-May-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Environment and Waste Management (IJEWM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com